
Department of Information Engineering and Computer Science

Master’s Degree in
Computer Science

final dissertation

Drive-by Download Attacks as a
Stackelberg Planning Problem

Supervisors Student

Chari.mo Prof. Fabio Massacci Giorgio Di Tizio

Dott. Robert Künnemann

Academic year 2017/18

Contents

Executive Summary 3

Introduction 4

1 Drive-by Download Attacks as a Stackelberg Planning Problem 7
1.1 Planning . 7
1.2 Formal Threat Model . 7

1.2.1 Attacker reward . 8
1.2.2 Attacker actions . 8

1.3 Formal Defender Model . 13
1.3.1 Content mitigations . 13
1.3.2 Secure protocol mitigations . 14
1.3.3 Routing mitigations . 15
1.3.4 DNS-level mitigations . 15
1.3.5 CA mitigations . 16

2 Experimental Validation over the Internet 17
2.1 Data acquisition . 17

2.1.1 Server . 17
2.1.2 Routing and Network Information . 18
2.1.3 Countries . 18

2.2 Result and Evaluation . 18
2.2.1 Attackers Identification . 19
2.2.2 Case study: Malicious Countries . 19
2.2.3 Case study: Malicious Companies . 20

3 Related work 22

4 Conclusion 23

A Drive-by Download and Exploit Kits 24
A.1 Drive-by Download distribution . 24
A.2 Exploit Kits . 25

B Formal model of the Attacker 26
B.1 Propagation rules . 27

B.1.1 Initially Compromised Nodes . 27
B.1.2 Content Compromise . 28
B.1.3 Third-party JS Injection . 28
B.1.4 DNS Compromise . 28
B.1.5 Route Compromise . 28
B.1.6 Route to Web Server Compromise . 29
B.1.7 Route to Name Server Compromise . 29
B.1.8 From DNS to Domain Compromise . 30

1

B.1.9 Inline JS Injection . 31
B.1.10 Certificate Compromise . 31

C Crawlers and Data acquisition 33
C.0.1 Header Crawler . 33
C.0.2 CT Crawler . 35
C.0.3 Alexa Crawler . 35
C.0.4 HTTPS Crawler . 36
C.0.5 DNSSec and DANE scripts . 37

D Planner Problem Generator 40
D.0.1 The PDDL language . 40
D.0.2 Fast Downward and Translator file . 40
D.0.3 PDDL generator script . 42

E Additional Evaluations 47
E.1 DB Taint . 47
E.2 Actions Taint . 48

Bibliography 49

2

Executive Summary

This thesis evaluates the security countermeasures implemented on the Internet to assess the impact
of Drive-by download attacks in different scenarios. It provides the best combination of possible miti-
gation techniques for each threat and an estimation of the cost for the defenders.

Using Steinmetz et al.’s Stackelberg planning framework [49], we can identify optimal defender strate-
gies for an optimizing attacker, for example, one that maximizes the number of assets he controls.
This relies on a sound and complete formalization of the threat model, of the defender model, and an
accurate cost estimation. The formal threat model is developed by analyzing the state-of-the-art tech-
niques used to spread malicious code and the possible mitigations available. Crawling for data on the
Internet infrastructure provides a representative environment in which the threat model is evaluated.

This thesis employs a planning algorithm to analyze the Internet defense against specific threats and to
evaluate available countermeasures. It illustrates a formal description of the attacker’s and defender’s
actions, as well as an estimation of the cost to implement such countermeasures. A crawling activity
is employed to collect data from the Internet. This phase makes use of target-specific crawlers to gen-
erate a realistic representation of the dependencies on the Internet and to provide a description of the
security countermeasures currently enforced.
This thesis presents a set of case studies where we examine the best combination of mitigations to
reduce the impact of different kinds of threats. In particular, we focused on two classes of attackers:

• Malicious Country: we simulate cyber attacks performed by two European countries, the
Netherlands and Great Britain, and by China.

• Malicious Company: we access the impact of Amazon and Cloudflare; two companies that
provide many Internet services all over the world.

Due to the huge amount of information, for each case study, we preprocess the data to generate an
optimized planning problem for the algorithm.
Limitations: in the first place the costs associated to each mitigation, if no other information were
available, are the result of an estimation; the formal model developed is assumed to be sound and
complete. Finally, due to memory and time constraints related to the planning algorithm, the results
could not describe a global and complete picture of the entire Internet infrastructure.

The results show that the Internet infrastructure is based on strong dependencies between domains,
name servers and other Internet elements that belong to different countries and organizations. These
dependencies entail trust relationships that can be exploited by malicious entities. Companies and
countries in a predominant position can affect political, economic and social behaviors through a mass-
level infection of millions of users. In particular, we highlight a poor implementation of the security
mechanisms in the Internet infrastructure; the results of the planning showed that the economic effort
to significantly reduce the profit of attackers is really small. We believe that this situation is due to a
lack of security experts in the development of websites and networking aspects, and primarily due to
economic driven factors where the security is overcome by the convenience.

3

Introduction

The Internet infrastructure relies on many network services (for example DNS, CDN, email) that inter-
act with each other generating a multitude of dependencies, often hidden and not clearly defined. The
distributed nature of the Internet provides many benefits in terms of performance and accessibility but
poses new threats to its security [48, 55]. Interactions on the Internet are often exploited by malicious
users to achieve their personal goals. This is the case of the Drive-by download attacks [36, 31, 37],
where the complex interaction between clients and web servers is exploited to infect the final users.
Currently, the distribution of malware makes an extensive use of Drive-by download mechanisms to
spread malicious code and compromise unaware visitors. An attacker can generate Drive-by download
attacks in many different ways: relying on cross-site scripting attacks, malicious dynamic content, DNS
poisoning and even on routing-level attacks. The rise of Advanced Persistent Threat (APT) groups
sponsored by nations [11], driven by economic and political reasons, knows no limit to the assets and
ability of the attackers and poses threats to the security of each user on the Internet.

Over the years, different protocols and mitigation techniques have been proposed to protect the In-
ternet infrastructure in terms of routing (IPsec [24, 18]), name resolution level (DNSsec [3]), website
delivery (HTTPS [41], DANE [17], HSTS [16], CSP [6]), public-key infrastructure (Certificate Trans-
parency [26]), and third-party JS inclusions (SRI [8]).

No one has evaluated how these countermeasures can be used to mitigate such threats, or even to
which extent this is possible, and at what cost. Which combination of proposals is the most cost-
effective considering infrastructure? Are some of them too costly to deploy or simply less efficient than
existing proposals? Are there countermeasures that are effective for any kind of attacker? Are these
countermeasures enough to prevent APT attacks?

Scope of work: The goal of this thesis is to provide a formal description of the Drive-by download
attacks and evaluate the impact of these mechanisms on real data of the Internet infrastructure. This
thesis does not aim at providing a full enumeration of all possible techniques used to implement Drive-
by download attacks; this enumeration, that typically depends on the level of description chosen, is
out of the scope of this thesis.

To achieve this goal, it is necessary to formulate a threat model that describes the attacker’s ca-
pabilities and the options for the defender. The evaluation of the effects on the Internet requires to
collect real data through a crawling activity. The definition of different kinds of attackers, with different
characteristics, allows to examine in deep the possible mitigations. Finally, the huge amount of data
and the complicated dependencies between the Internet elements require to implement optimizations
to reduce the complexity of the problems.

This thesis provides the following contributions:

• a formal description of the Internet infrastructure as well as the definition of available attacks
and possible mitigations.

• the creation of a realistic representation of the Internet infrastructure through the collection of
data via crawlers.

4

• the generation of optimized planning problems through a preprocessing of the data collected and
the model developed.

• the evaluation of the security mechanisms on the Internet in different case studies. We assess the
impact of country attackers like China, Great Britain, and the Netherlands. As well as companies
like Amazon and Cloudflare. For each scenario, we analyzed the best countermeasures and their
related cost in problems with more than 350k attacker’s actions in combination with more than
7k defender’s actions.

• an evaluation on the impact of errors in the crawling phase and in the formal threat model based
on tainting.

The project is composed by different phases; in Fig. 1 is presented the complete process:

CRAWLERSTARGET
WEBSITES

NAME
SERVERS

DATABASE

SETTINGS

PDDL
SCRIPT

TRANSLATOR

PLANNING
ALGORITHM

PARETO
FRONTIER

FORMAL MODEL

interact

interact

interact

interact

interact

store read

load

generate read compute

contain

Figure 1: Project workflow

• Phase 1: a formal description of the model in terms of predicates and rules is implemented.
The model contains the definition of the attacker’s actions and the mitigations, that describe the
information required for the problem.

• Phase 2: the information is retrieved from the Internet through a set of scripts; the websites
are obtained from the top 5k Alexa domains list. For each target website, a set of crawlers
interact with the web server and other websites that contain statistic information of the target;
for example the Google Transparency Report1 and the Alexa websites2.

• Phase 3: the information collected by the crawlers is preprocessed and stored in a PostgreSQL
database hosted in a server.

• Phase 4: the planning problems are generated through a script that receives as input the
settings for the problems3 and retrieves the necessary information from the DB. This script is
implemented following the formal model defined in Phase 1. The final output of this script is
not described in the PDDL language but it is an intermediate preprocessed file, called Translator,
where the variables are instantiated with all their possible values.4

1https://transparencyreport.google.com
2https://www.alexa.com/
3For example, the dimension of the problem in term of data that must be retrieved from the DB and the definition

of the attacker’s asset.
4This procedure is an optimization that reduces the amount of time needed by the planning algorithm.

5

• Phase 5: the planning algorithm receives as input the Translator file and the Fast Downward
planner computes the Pareto Frontier of the problem. The result is the set of mitigation strategies
that are not dominated5 by any other mitigation strategy.

The results showed that most of the countermeasures are effective to mitigate any kind of attacker.
The cost of the mitigations is relatively small with respect to the economic damage of the infection;
unfortunately, most of the Internet infrastructure does not enforce proper mechanisms. This situation
leaves users vulnerable to Drive-by download attacks. The mitigations that can be implemented vary
depending on the specific threat and the choice of certain defenses can be influenced by their cost.
In the scenarios analyzed, the implementation of end-point level defense (for example HTTPS, HSTS,
CSP, and SRI) represents one of the most cost-effective mitigation.

The thesis proceeds as follows:

• Chapter 1: discusses the formal threat model and the defender model;

• Chapter 2: presents the data collected through the crawling phase and examines the case studies
of China, Great Britain, The Netherlands, Amazon, and Cloudflare.

• Chapter 3: reports related work on this topic.

• Appendix A: discusses Drive-by download mechanisms and the tools used by cybercriminals;

• Appendix B: contains the complete formal threat model, that describes the attacker actions
and the mitigations;

• Appendix C: contains the explanation of the different crawlers used to retrieve information
from the Internet;

• Appendix D: contains the description of the Python script used to generate the Translator file;

• Appendix E: discusses taint analysis over the data and the threat model;

This thesis is the result of my internship at the Center for IT-Security, Privacy and Accountability
(CISPA) - Helmholtz-Zentrum (i.G.). The content of these chapters and appendixes is the product of
my work at CISPA. The planning framework used has been developed in other CISPA projects [49, 50].

5A mitigation strategy dominates another if its cost is smaller than the other mitigation, while the attacker reward
is not larger.

6

Chapter 1

Drive-by Download Attacks as a
Stackelberg Planning Problem

In this chapter we will present the threat model developed for the mitigation analysis and we will
provide an estimation of the cost for the defender’s actions.

1.1 Planning
Our mitigation analysis is based on Automated Planning ; a problem is described in terms of state
predicates, initial state, a goal specification, and a set of actions that can be used to change the state.
The purpose of automated planning is to find a sequence of actions that achieve the goal condition
when applied in the initial state. In particular, we implemented classical planning, where it is assumed
that all actions have deterministic effects and that the initial state is completely known.

Mitigation analysis through planning has been proposed recently in the literature with the goal of
analyzing network penetration testing [49, 50]. They are described with a defender-attacker model,
where the defender tries to limit the actions that an attacker can execute.
The states are described by a set of propositions; a state is an assignment to these propositions that
makes them True. An action is given by a precondition precond, a boolean formula over proposition
literals and a postcondition postcond, a conjunction over proposition literals, and is commonly written
as:

precond

postcond
(1.1)

An action is executed only in those states in which the precondition precond is True. The application of
an action changes the state accordingly to the postcondition expressed in postcond, making the boolean
formula True.1 The actions describe specific attacks implemented by an attacker; each attack has
associated a reward, that estimates the damage generated, while the defender actions have associated a
cost, that describes the effort required to enforce such mitigation. The planning analysis is implemented
as a Stackelberg game where a defender gets to move first, and the subsequent move of the attacker is
executed without additional actions of the defender.
The final result of the algorithm is a Pareto frontier P of mitigation strategies, i.e., the set of mitigation
strategies which are not dominated2 by any other mitigation strategy.

1.2 Formal Threat Model
Our threat model presents different types of attacks, that can be implemented at different levels of the
Internet infrastructure. Certain types of attacks are not feasible for any kind of attacker, because they

1In our model we implemented monotonic attacker actions, which implies some algorithmic advantages. In other
words, the preconditions and postconditions are composed only by positive literals; this implementation describes the
case in which an attacker continuously gains new assets but it never loses assets previously acquired.

2A mitigation strategy dominates another mitigation strategy if its cost is strictly smaller while the attacker reward
is not larger, or if the maximal attacker reward is strictly smaller while the cost is not larger.

7

require to have access to sensitive Internet resources. Our rules are able to describe attacks that can
be mount by different actors: from State-sponsored APT to small hacker groups. Our formal threat
model takes into account the nature of the attacker and traduces this information in the set of actions
that are feasible for the considered actor. These scenarios allow measuring the impact of Drive-by
download attacks on the Internet and the efficacy of the countermeasures in different scenarios with a
different level of danger.
One of the advantages of a drive-by download attack is that presents a higher stealthiness with respect
to other mechanisms of malware propagation because the compromise is carried through legitimate
network requests. In our model we ignore attacks that can be easily detected and that can bring to a
global exposure, for example BGP hijacking attacks, assuming a "sneaky" attacker.

1.2.1 Attacker reward
The goal of the attacker is to deploy malware in as many clients as possible through a malware
distribution network; this approach requires to compromise web servers. We evaluate the impact of
an attacker in terms of the ratio between the number of malicious web pages that will be accessed by
the users and the total number of web pages visited. For each website, an estimation of the number of
visitors in a month3, for a certain group of countries Countries4, is used as reward for the attacker.
In case the attacker is able to compromise the web server for a certain set of countries, its reward is
given by the sum of the number of visitors of the considered countries as shown in 1.2

Reward =
∑︂

i∈Affected_Countries

Visitorsi ,d (1.2)

where:

• Visitorsi ,d is the estimated number of visitors for the Website d from the Country i;

• Affected_Countries is the set of countries that are affected by the attacker. Affected_Country
is a subset of the Countries set (Affected_Country ⊆ Countries);

If an attacker compromises two different domains A and B, it is possible that some visitors of the domain
A are also visitors of the domain B ; therefore the sum of the rewards could present a shared group
of visitors; some domains share more users with each other (thehackernews.com and wired.com) than
others (nytimes.com and lefigaro.fr), due to lack of data we cannot infer how much this intersection
weights in the total number of compromised users for the different cases considered.

1.2.2 Attacker actions
The threat model describes the attacker actions as a set of rules; each rule identifies a specific attack,
underlining its requirements and its consequences on the Internet infrastructure. A set of predicates
represents the elements on the Internet and their relations like DNS servers, CAs, routing connections,
etc.; Table 1.1 contains the predicates defined in the model. The complete model and the list of pred-
icates is presented in the Appendix B. The attacker has access to an initial asset composed of IPs,
autonomous systems, domains, name servers, and certificate authorities; this initial asset depends on
the type of attacker considered in the planning problem.5

In the following, we present some of our rules that compose the threat model, the rules vary from
web attacks to routing and protocols attacks. The representation of each attack follows the structure
presented in Section 1.1, where precond represents the set of conditions that are required to implement
the attack and postcond represents its consequence.
For example, the rule 1.3 can be read as follow: given any domain d (d ∈ D) vulnerable to XSS attacks
(XSS (d)) that does not implement a secure content security policy (¬CSP(d)), it can be compromised
(C(d)) through a cross-site scripting attack.

3This information is retrieved from Alexa. We assume that the attacks are stealthy and can remain active for this
interval of time.

4This set contains the first 10 countries that present the highest number of visitors for the first 10 Alexa domains:
CN, US, JP, IN, GB, DE, KR, FR, BR, TW.

5For example, State-sponsored APT groups will have a richer asset with respect to small hacker groups due to
economic and political support.

8

Table 1.1: Threat Model Predicates6

Predicate Description
x

loc−−→ cn The element x ∈ AS ∪ IP ∪D ∪NS is located in cn ∈ Country

d
A−→ i The element d ∈ D has address i ∈ IP

i
orig−−→ a The element i ∈ IP belongs to a ∈ AS

c
JS−→ d The element d ∈ D contains a JS script hosted in the element c ∈ D

e
DNS−−−→ d The element e ∈ NS can be queried to resolve the DNS translation of d ∈ D. In

other words e is one of the authoritative name servers of d

a
RTE(b)−−−−−→ c Given a, b, c ∈ AS, the route from a to c passes through b

C(x) The element x ∈ AS∪IP ∪D∪Country∪NS is compromised. In case x ∈ D∪NS,
the predicate means that x can be used in a Drive-By Download mechanism.
This predicate will be called Globally compromised

C(c, d) The element d ∈ D is considered compromised for all the clients that belong to
c ∈ Country. This predicate will be called Country compromised

XSS(d) The element d ∈ D is vulnerable to XSS
CSP (d) The element d ∈ D implements a secure Content Security Policy
UpgradeRequests(d) The element d ∈ D forces to use the HTTPS protocol for all the resource requests.

This predicate describes the field upgrade-insecure-requests in the CSP
SRI(d, c) The element d ∈ D implements the Sub-Resource Integrity mitigation for all the

resources, used by d, stored in c ∈ D. It is assumed d ̸= c
IPsec(a, b) The packets routed between a ∈ AS and b ∈ AS are protected via IPsec
DNSsec(f) The element f ∈ NS implements DNSsec
HTTPS(d) The element d ∈ D implements HTTPS
l_HTTPS(d, e) All the JS resources, used by d ∈ D and hosted in e ∈ D, are retrieved over HTTPS
HSTS(d) The element d ∈ D implements the header Strict-Transport-Security
Redirect(d) The element d ∈ D redirects HTTP connections to HTTPS. The redirection is either

Temporary (Status code 302) or Permanent (Status code 301)
CT (d) The digital certificates, for the element d ∈ D, are signed by CAs that are compliant

with the Certificate Transparency
DANE(d) The element d ∈ NS implements DANE protocol
IDNS(d) The DNS resolution of the element d ∈ D is compromised. This predicate will be

called Globally compromised DNS
IDNS(d, e) The DNS resolution of the element d ∈ D is compromised for the clients in c ∈

Country. This predicate will be called Country compromised DNS
IR(a, c) The route between a, c ∈ AS is compromised
I_CA(d) The element d ∈ D is vulnerable to certificate authority attacks

Content Compromise

The attacker can exploit Web application vulnerabilities, for example cross-site scripting (XSS) vul-
nerabilities, to compromise the content of the website. In this case, the web server is considered
compromised and can be used as a landing page in the malware distribution network.

d ∈ D XSS (d) ¬CSP(d)

C(d) (1.3)

We considered as mitigation the implementation of a secure Content Security Policy (CSP), whose
main goal is to protect websites against XSS attacks.

6Some predicates are represented with an arrow notation. The set of predicates vary over the set of
AS, IP,D,Country,NS,CA.

9

Third-party JS Injection

The advent of the dynamic Web and, later on, the Web 2.0 increased the complexity of websites. Each
content in the Internet requires to access a set of HTML,CSS and JS files; often some of these resources
are stored in third-party servers.
Once a client connects to a website, it automatically requests the external resources to a content delivery
network (CDN); this approach improves the performance but presents some security problems. The
CDN has full control over the content of a website; if one of these third-party servers is compromised,
it can inject malicious code in all of these websites [14]. In this case, the attacker can insert malicious
JS code to redirect the victims to an Exploit Kit (EK).

d, c ∈ D c
JS−→ d ¬SRI (d , c) C(c)

C(d) (1.4)

We considered as mitigation the implementation of Subresource Integrity (SRI) on the JS resources
retrieved from third-party servers; this mitigation allows to provide to the browser a hash of the trusted
script that will be compared with the one of the received file.

DNS Compromise

The main purpose of the DNS protocol is the resolution of symbolic hostnames into their related IP
addresses. To resolve a domain name, the client sends a query to a recursive DNS resolver; if the
information is not present in the cache, the recursive DNS traverses the DNS hierarchy structure, until
it reaches an authoritative name server (NS) for the target domain. If the attacker has access to one
of the NS queried in the DNS resolution path, then the entire DNS resolution is compromised. The
attacker can modify the content of the DNS records and redirect the client to a malware distribution
site.7

In our model the attacker is not able to compromise root servers; this situation does not fulfill the
requirement of a "sneaky" attacker. Furthermore, if the root NSs are compromised, then the entire
DNS protocol is not reliable.

d ∈ D e ∈ NS e
DNS−−−→ d C(e)

IDNS(d) (1.5)

Route Compromise

Our model describes routing attacks at the autonomous systems (AS) level; the Border Gateway
Protocol (BGP) [40] is used to compute the AS path for a destination. The routes from an AS depend
on the routing policies implemented; these policies are influenced by political, economic and security
aspects. The extraction of this routes is described in Section 2.1.
In case the attacker has control over an autonomous system within the AS path, the routing path
is considered compromised; if specific conditions are met the attacker can drop and replace packets
without being detect8. The advantageous position of the attacker is not the result of a BGP hijacking
but is given by the Border Gateway Protocol.

a, b, c ∈ AS a ̸= b ̸= c a
RTE(b)−−−−−→ c ¬IPsec(a, c) C(b)

IR(a, c) (1.6)

We considered as mitigation the implementation of IPsec to encrypt the communication between the
sender and the destination AS.

7This attack is described in the rule 1.9 and 1.10.
8This type of attack is described in the rule 1.11

10

Route to Web Server Compromise

If the route from a client to a web server is compromised, the attacker can implement a MITM attack
and alter the communication; such attack is possible if the client does not authenticate the web server’s
communication via cryptographic protocols. The implementation, by the web server, of HTTPS is not
enough to prevent a MITM attack; by default, if not explicitly defined9, browsers access resources
via the insecure HTTP protocol [30]10. In this case, the client cannot authenticate the web server,
therefore the attacker can eavesdrop the unencrypted TCP connection, drop the packets directed to
the web server, and send malicious responses. Even if an HTTP server is implemented to redirect the
connection to an encrypted one, the first access of each connection is insecure and can be prone to
MITM attack.
To force the browsers to access the website via a secure protocol, the HSTS policy must be implemented.
This policy defines a header that must be sent over a secure communication11, therefore it is necessary
to implement a redirection to HTTPS. Furthermore, if a web server with HTTPS enable is vulnerable
to certificate authority (CA) attacks,12 then a malicious CA can forge digital certificates for the domain
and use them to authenticate connections to malicious web servers. In this case HTTPS is not effective
to protect the domain.

e∈Country d∈D a,c∈AS d
orig−−→c a

loc−→e IR(a,c)
(¬HTTPS(d)∨(HTTPS(d)∧I_CA(d))∨

(HTTPS(d)∧(¬Redirect(d)∨(Redirect(d)∧¬HSTS(d)))))

C(e, d) (1.7)

In our model we do not consider the possibility to implement a bootstrap MITM attack: this vulner-
ability happen when a HSTS secured website is initially accessed through HTTP, because no previous
HSTS information were available.13 To mitigate this type of attack, browser vendors include a HSTS
pre-loaded list14, which ensures that websites in the list are directly accessed through HTTPS.

Route to Name Server Compromise

If the route from a client to a name server passes through an AS under the control of the attacker,
the attacker can perform a DNS cache poisoning. Due to the fact that the DNS protocol does not
require any authentication, the attacker can send to the victim a malicious DNS resolution; the MITM
position of the attacker does not require to guess the Query ID and the port used by the resolver. The
malicious DNS resolution will redirect the traffic to the malware distribution network of the attacker.

a,c∈AS a
loc−→e e∈Country f

orig−−→c

f
DNS−−−→d IR(a,c) ¬DNSsec(f)

IDNS(d, e) (1.8)

The DNSsec protocol is used to mitigate this kind of attack; the DNS response is authenticated via
cryptographic signatures.

From DNS to Domain Compromise

If the attacker compromises an authoritative NS of a web server (IDNS(d)15), it can insert malicious
DNS records to redirect the victim to an Exploit Kit. This attack is feasible if the client does not access
the Website via a secure protocol that requires authentication16 or the HTTPS is make ineffective due

9I.e., the https protocol is not present in the URL.
10This behavior is due to the fact that the HTTPS protocol has been proposed after the HTTP protocol and it is not

globally deployed.
11Otherwise the source cannot be trusted.
12See rules 1.12 and 1.13
13Even if the web server redirects to HTTPS.
14https://hstspreload.org
15See DNS Compromise rule in Section 1.2.2
16As previously explained in the Route to Web Server Compromise rule.

11

to certificate authority vulnerabilities (I_CA(d)).17

IDNS(d) (¬HTTPS(d)∨(HTTPS(d)∧I_CA(d))∨
(HTTPS(d)∧(¬Redirect(d)∨(Redirect(d)∧¬HSTS(d)))))

C(d) (1.9)

The same attack is implemented if the authoritative NS of one of the CDN is compromised. In this case
the attacker can redirect, via malicious DNS response, a client to another CDN which provides malicious
code. This code can either infect the victim or redirect the client to a malware distribution site. This
attack is possible if the resource is addressed through an insecure protocol (¬l_HTTPS (d , c)) and the
browser does not upgrade insecure connections to HTTPS (¬UpgradeRequests(d)).

IDNS(c) c
JS−−→d

¬SRI (d ,c) ¬l_HTTPS(d ,c) ¬UpgradeRequests(d)

C(d) (1.10)

We consider as mitigation the connection via HTTPS and the implementation of Subresource Integrity
for the JS resources retrieved from third-party servers (SRI (d , c)).

Inline JS Injection

If a resource is retrieved through an insecure connection (¬l_HTTPS (d , d_2)∧¬UpgradeRequests(d))
and the website does not implement the Subresource Integrity check (¬SRI (d , d_2)), then a MITM
attacker (IR(a, b)) can eavesdrop and modify the content of the resource, injecting malicious code.
New version of browsers implement a Mixed content [7] block, that does not allow to retrieve active
resources18 using an insecure protocol, if the Website is loaded over HTTPS. Therefore, the inline JS
injection requires that the Website is accessed over HTTP (¬HTTPS (d)∨(HTTPS (d)∧(¬Redirect(d)∨
(Redirect(d) ∧ ¬HSTS (d))))).

c∈Country a,b∈AS d,d_2∈D d_2
orig−−→b

a
loc−→c IR(a,b) d_2

JS−−→d
¬l_HTTPS(d ,d_2) ¬UpgradeRequests(d) ¬SRI (d ,d_2)

(¬HTTPS(d)∨(HTTPS(d)∧(¬Redirect(d)∨(Redirect(d)∧¬HSTS(d)))))

C(c, d) (1.11)

To mitigate this attack, the website must force the client to retrieve external resources through HTTPS
or implement a Subresource integrity check.

Certificate Compromise

The attacker can compromise a Certification authority to generate digital certificates for the target
domain. Our model assumes that, if the target domain does not have digital certificates signed by CAs
compliant with the Certificate Transparency project (¬CT (d)), it is unlikely that the domain owner
will verify the CT logs to detect misissued digital certificate.19

In case the Certificate Transparency (CT) logs are not controlled, the web server can secure its cer-
tificates using DANE (DANE (e)); this protocol allows to define TLSA records in the DNS response
of a NS, with the information about the list of certificates or CAs that can be trusted by the client.
To successfully issue malicious digital certificates, the attacker requires that the authoritative NSes
of the target website do not implement the DANE protocol. Once a certificate is generated by the
compromised CA, the attacker can redirect clients to malicious web server, with a valid certificate for

17As described previously in the rule Route to Web Server Compromise in Section 1.2.2, we assume that the first
connection to the website is not tainted.

18Scripts, stylesheet, flash resources.
19This simplification is due to the fact that current browsers are not forced to verify the SCT.

12

the target domain.

a∈CA d∈D C(a)

e
DNS−−−→d ¬CT (d) ¬DANE(e)

I_CA(d) (1.12)

The attacker can generate new certificate for a web server, even if the DANE protocol is implemented,
if it has control of the authoritative NS for the domain; in this case the attacker can modify the TLSA
records and insert malicious certificates generated by the compromised CA.

a∈CA d∈D C(a) e
DNS−−−→d

¬CT (d) DANE(e) C(e)

I_CA(d) (1.13)

1.3 Formal Defender Model
The defender model is composed by a set of actions that aims to minimize the attacker reward presented
in Section 1.2. Each action has associated a cost and it is proposed as mitigation for a specific attack.
The cost is based on publicly available data and can be seen as a general description of the effort that
the defender must put to mitigate a specific attack.

1.3.1 Content mitigations
To secure the content of a website against Cross-site scripting attacks, we propose the implementation
of a secure Content Security Policy [51]. The core of the CSP is the definition of a list of trusted
domains as permitted sources of external resources and the block of inline scripts in the web pages.
The implementation of a secure policy will reduce the probability that a malicious user will be able to
exploit XSS vulnerabilities in the Web application.
In the different versions of the specification, the CSP added many functionalities, that allow to protect
against different types of attacks. In our mitigation proposal, we focus on the implementation of a
CSP that protect Web application against Cross-site scripting attacks20.
CSP, as well as many other security-based HTTP headers, is not widely deployed in the Internet [13]21;
furthermore, almost all of the implemented policies are bypassable [54]. For this reason, we assume
that the CSP mitigation follows the guidelines proposed by Weichselbaum et al. [54].

d ∈ D
CSP(d)

c = $(#inline+#ext+#event) ∗ 1 h ∗ 34.9 $/h
(1.14)

Cost estimation: The implementation of a secure CSP is strictly related to the specific website; the
number of inline scripts, external JS resources, inline event handlers and the presence of advertisements
are some factors that influence its complexity. We assumed that the CSP implemented is based on
the level 3 specification22, where a nonce-based protection can work in parallel with a whitelist-based
approach, and dynamically generated scripts can be handled with the strict-dynamic keyword. We
modeled the cost for a website as a consultant cost23 that depends on the web page structure. A
nonce-based approach does not require to refactor the application in case inline scripts are present
but, vulnerabilities within the scripts, allow to bypass the mitigation; we estimate a cost of 1 h of
consultant work to analyze each inline script. The same considerations hold for the external scripts:
injections into the src attribute or, in case of a whitelist approach, script execution bypasses [54] can
evade the restrictions of the CSP. In case the web page presents inline event handlers incompatible
with the CSP, it is necessary to refactor the website; we associated a 1 h of consultant work for each
inline event handler that must be refactored. The implementation of the policy requires a Trial and
error approach and a period of testing24; we estimate at least a week to analyze the behavior of the

20We will analyze in a different section a specific field of the CSP to mitigate inline JS injection.
21This scenario is confirmed by the results of our crawling activity.
22https://www.w3.org/TR/CSP3
23We assumed a per hour cost for a Security Engineer. Source: https://www.payscale.com/research/US/
24CSP allows the implementation of a report-only mode.

13

CSP25, with an additional cost for the testing equal to 56 h. This cost estimation allows to have a
coarse idea of the amount of effort that a domain must employ to define a secure CSP.

Attackers can target CDN to compromise hundreds of thousands of sites that depend on it; all the
external resources retrieved from these servers can be modified to infect website’s users. We can secure
websites against malicious modification of JS resources via Subresource integrity: the website provides
a hash of the resource26 hosted in a third-party server, the file is then retrieved from the CDN and its
hash is compared with the integrity value. If the value does not match, the browser will not execute
or load the resource.
This type of attacks are widespread and can be implemented in large scale as shown by the Great
Cannon attack [27, 1]; the implementation of SRI for the resources provided by the Baidu servers,
could have reduced the impact of this attack. [53]
The SRI mitigation can be implemented for all the resources that do not change over the time, for
example, versioned JS libraries. In case a resource is modified its integrity value must be updated,
otherwise, the hash comparison will fail;27 furthermore, the SRI cannot protect dynamically generated
scripts.

d, c ∈ D c
JS−→ d

SRI (d , c)
c = $280 (1.15)

Cost estimation: We assigned a consultant cost of 1 day for implementing SRI on a website; exist
several tools [23] that can be used to help developers in the inclusion of the integrity value. We did
not consider any backup cost to handle mismatches of hashes.

1.3.2 Secure protocol mitigations
The HTTP connection between a client and a website can be secured through TLS to achieve authen-
tication, integrity, and confidentiality. HTTP is the default protocol used by browsers; a connection to
a website is carried over HTTP if a different protocol is not specified. A website, that correctly imple-
ments the HTTPS protocol, can be vulnerable to MITM attacks if a client accesses the server through
an insecure connection. To prevent this risk the client must be redirected to an HTTPS connection.
To force clients to access a web server directly through HTTPS, web servers can implement an HSTS
policy. The HSTS header is sent to inform the browser that the specific domain and, if explicitly de-
clared, all its subdomains must be accessed via HTTPS for a certain period of time. All major browsers
present a HSTS preload list that contains a set of domains for which the browser automatically creates
an HTTPS connection.

d ∈ D
HTTPS (d)

c = $280 (1.16)

d ∈ D HTTPS (d)

Redirect(d)
c = $280 (1.17)

d ∈ D HTTPS (d)

HSTS (d)
c = $280 (1.18)

Cost estimation: We calculated the cost for implementing a secure connection as a consultant cost
of 1 day. The implementation of HTTPS on a website requires, in the worst case, to manually modify
the configurations of the web server. We did not include the cost of the digital certificate, due to the

25This period of time is strictly related to the number of visitors; higher is the number of visitors, faster is the generation
of a complete report for the CSP.

26Typically a script or a stylesheet.
27To temporarily handle this mismatch the external resource can be retrieved from a local repository. This approach

reduces the advantages provided by the CDN.

14

presence of free CA like Let’s Encrypt28. The same considerations hold for the redirection mechanism
and the implementation of an HSTS policy.

Even if a website is accessed via HTTPS, an attacker can exploit subresources retrieved through HTTP
to implement a MITM attack. This situation is called Mixed content; resources retrieved through an
insecure connection are displayed in a web page along with content loaded over HTTPS. A MITM
attacker can intercept the insecure connection and alter the external resource to infect visitors. Mod-
ern browsers block Mixed content for active resources that can compromise the entire website; passive
mixed content is typically notified through a warning message. Even if client-side countermeasures
are present, web servers must not use insecure URL for subresources. Different browser vendors can
handle in a different way Mixed content, and outdated browsers are not automatically protected from
this threat.
Subresources can be loaded through a secure connection either explicitly defining the HTTPS protocol
or using a Content security policy with a upgrade-insecure-requests directive. The latter technique
allows to inform the browser that all the site’s insecure URL must be replaced with HTTPS.
This mitigation requires that the external resources are available over HTTPS.

d, c ∈ D c
JS−→ d HTTPS (c)

UpgradeRequests(d)
c = $280 (1.19)

d, c ∈ D c
JS−→ d HTTPS (c)

l_HTTPS (d , c)
c = $280 (1.20)

Cost estimation: We assigned a consultant cost of 1 day for implementing HTTPS for all the external
resources of a website. The deployment of this mitigation requires to check that the subresources are
available through a secure connection and to force the use of HTTPS.

1.3.3 Routing mitigations
To prevent routing attack from a malicious AS in the AS path, packets routed between two autonomous
systems are encrypted and authenticated through IPsec [24, 18]. We assumed that the implementation
of an IPsec connection is not influenced by the geolocation of the endpoints, and it is the result of a
private agreement between AS owners.

a, b ∈ AS

IPsec(a, c)
c = $56000 (1.21)

Cost estimation: The cost of deploying an IPsec connection between two AS with a link speed of
10Gbit s−1 is roughly of 56 000$; this estimation includes the cost of two dedicated routers for 24 000$
each [39] and the consultant cost for configuration and maintenance per year (about 80 consulting
hours) [5].

1.3.4 DNS-level mitigations
To prevent DNS cache poisoning attacks, the DNS data are authenticated and protected through
DNSsec [3]. The adoption of DNSsec by end users is still very low [2] therefore we assumed that the
DNSsec verification is implemented in the recursive resolver of the ISP [32]29 and the route from the
user to the recursive DNS resolver is secure. DNSsec is deployed in the root servers and in most of the
TLDs [21]; we estimated the overall cost to activate DNSsec in all the authoritative NS managed by
a company. This mitigation is implemented only for those domains, for which the DNSsec is deployed

28This additional cost depends on the company strategy.
29The DNSsec mitigation is useless in case the clients do not verify the signature.

15

in all the elements of the chain of trust up to the root NSs.

∀f ∈ NS : f
DNS−−−→ d

DNSsec(f)
c = $366342 (1.22)

DNS-Based Authentication of Named Entities (DANE) [17] is a DNS-level mitigation against vulner-
abilities in the CA model [34]. This protocol allows to retrieve, through DNS queries, both DNS
resolution and certificate information for a certain domain name. The TLSA record presents different
usage field values that allow working along with or without the CA model. To authenticate and protect
the certificate information, DANE requires to work over DNSsec.

∀f ∈ NS : f
DNS−−−→ d DNSsec(f)

DANE (f)
c = $4000 (1.23)

Cost estimation: We estimated an overall cost of 366 342$ to deploy DNSsec; this value is the
maximum CAPEX extracted from a survey [32] among 19 companies. We assumed that this cost is
representative for the set of companies that manage the authoritative NSs in the database.30

The cost of implementing DANE should not require a big effort in case DNSsec and TLS protocols are
already deployed; the major operation is the creation of the TLSA record for the certificate.31 We fix
the cost for this process to be no more than 4000$, as in [50], corresponding to 40 working hours.
Currently, major browsers do not automatically validate DNSsec and DANE; this procedure can be
achieved through plugins. We assume that an extensive adoption of these protocols will encourage
browser vendors to implement these functionalities.

1.3.5 CA mitigations
The authentication of a web server on the Internet relies on digital certificates issued by certificate
authorities. In the last years, this model showed many flaws that brought to mistakenly issued cer-
tificates and CA compromise. Google presented the Certificate Transparency [26] project that aims
to detect misissued certificates; this is done through a set of publicly available append-only certificate
logs, that contains all the certificates present on the Internet. Domain owners can verify the list of
digital certificates issued for their domains and detect the presence of unauthorized ones.
Chrome browser requires that all the certificates issued after April 2018, must be compliant with the
CT policy; other browser vendors, for example Mozilla [29], are planning to include support for the
CT project.

d ∈ D HTTPS (d)

CT (d)
c = $280 (1.24)

Cost estimation: This mitigation does not require any effort for domain owners; we assigned a
consultant cost of 1 day to choose CAs compliant with the CT policy, assuming that in the short-
term future, all the browsers will implement this functionality. Chrome covers more than 65% of the
desktop browser market share 32, therefore this mitigation concerns many Internet users. In our cost
estimation we did not include the implementation of monitors to detect unauthorized certificate; exist
public Websites to access CT logs33.

30The maximum value allows to represent the worst-case scenario.
31Exist tools to automatically generate this records, for example https://ssl-tools.net/tlsa-generator.
32http://gs.statcounter.com/browser-market-share/desktop/worldwide, last access: 20/09/2018
33For example https://transparencyreport.google.com/https/certificates.

16

Chapter 2

Experimental Validation over the Internet

In this chapter we will describe the data collected from the Internet and we will present an automated
mitigation analysis for two case studies.

2.1 Data acquisition
Starting from the top 5k Alexa domains, we extracted the required information via DNS queries and
Web crawlers.
We had access to a list of websites with reflected XSS vulnerabilities on date 29 April 2018 from a
project of the Secure Web Applications Group of CISPA1, and we considered those domains that were
present in the 5k Alexa list.

2.1.1 Server
We extract from the Internet the information about web servers, authoritative name servers, and
content delivery networks.

Web Server

For each domain in the 5k Alexa list, we obtain the IP address of the website2 and we analyze the
security countermeasures implemented. We extract the security headers Strict-Transport-Security,
X-XSS-Protection, X-Content-Type-Options, X-Frame-Options and Content-Security-Policy. In
case a website implements CSP, we collect a set of fields regarding XSS and protocol mitigations.3

We access each domain through a secure connection to analyze if HTTPS is implemented; next, we
check if the web server redirects insecure connections to HTTPS, and we collect the sequence and type
of redirections.
We extract the list of JS resources statically and dynamically loaded and we analyze the presence of
subresource integrity. From the source code of the initial page of the website, we acquire the number
of inline JS, eval(), Function(), window.setInterval(), window.setTimeout() and onclick methods.
For each website, we extract the list of CAs that signed a digital certificate for the domain and we
check their presence in the Google Certificate Transparency logs.

Content delivery network

Starting from the URI of the JS resources, we identify the list of CDNs from which the external resources
are retrieved and we obtain their IPs; we analyze the type of protocol used and if the resources are
available via HTTPS.

Authoritative NS

For each website and CDN, we collect the list of authoritative name servers that are contacted during
iterative DNS resolution; we obtain the IP for each server and we analyze the DNS records to detect

1https://swag.cispa.saarland/
2We eliminated those domains that do not resolve to a website.
3The most relevant fields are: default-src, script-src, style-src, object-src and upgrade-insecure-requests.

17

DNSsec and DANE implementations.

2.1.2 Routing and Network Information
To model the internet connectivity, i.e., connectivity between ASes, we collect traceroutes provided by
RIPE Atlas [42] for the set of Autonomous systems considered in our dataset. We observed traceroutes
that have the domains from our dataset as their destination.

2.1.3 Countries
For each NS, website, and CDN, we include in our dataset their geolocation. We link IPs to ASes using
RIPEstat database service [33] and we map ASes to countries using the MaxMind database [28]. In
addition, each CA is mapped to a specific country using the information stored in the issuer section
of the digital certificate.

2.2 Result and Evaluation
The data collected in Section 2.1 are used to implement a set of planning problems from the threat
model. We compute different scenarios with different kind of attackers, from malicious countries to
companies, to describes various levels of risk for the Internet infrastructure.
The description of Drive-by download problems at the Internet level presents a huge amount of infor-
mation; due to the fact that a planning problem grows exponentially with the number of mitigation
actions, the planning algorithm is unable to manage all the possible combinations. The data set is
reduced to a subset of the 5k Alexa domains, depending on the specific attacker scenario4. We further-
more limit the maximum amount of memory space to 704Gbit due to architectural constraints. Even
with these simplifications, most of the problems required many days to compute the Pareto frontier;
the majority of the time is dedicated to the pre-processing phase of the planning algorithm. All the
planning problems ran on an Intel Xeon E5-4650L @ 2.60GHz machine with 32 physical and 32 HT
cores.

We weight domains by their number of visitors in a month, using the data provided by Alexa, and we
assigned these values as reward for the attacker. These data do not map directly to the number of
visitors compromised due to the overlap of users for different domains. Thus, this number should not
be interpreted as the number of users potentially affected, but as the total number of web pages visited
(out of our subsets) that gets to try to infect a user. We normalize this number for the total number
of web pages visited for the set of domains considered5. The final result represents the percentage of
malicious web pages that users retrieve on the Internet. The results presented in this paper can be
affected by different factors: first, the cost associated with each mitigation is retrieved through pub-
licly available information and, in case no data were obtainable, the costs are the result of estimations;
furthermore, the crawling activity describes a snapshot of the Internet that could not be representative
of the current status, due to the deep changes that can be implemented in a short amount of time.

Table 2.1: Statistics Problems Complexity DB with top 100 Alexa Domains
Attacker AS asset Domains as-

set
NS asset IP asset CA asset Attacker ac-

tions
Defender ac-
tions

US 79 264 338 733 32 333546 7173
DE 30 255 0 478 0 352512 7171
IT 12 105 0 110 0 333546 7168
Google 19 47 7 30 / 352512 7170
CloudFlare 8 22 8 25 / 350867 7169

4More powerful is the attacker, higher is the number of combinations that the planner must check and consequently
the amount of time and memory required. A smaller number of domains reduces the complexity of the problem.

5In other words, the sum of the rewards for all the domains in the planning problem.

18

2.2.1 Attackers Identification
Simeonovski et al. [48] presented a set of metrics that allow to define possible attackers6. The metrics
we extracted are: the number of Alexa domains, the number of domains hosting JS libraries and the
number of name servers. The results presented by Simeonovski et al. are based on the top 100k Alexa
domains. This dataset provides a good representation of the most powerful entities on the Internet.
Their work analyzed the content of a single AS to access the influence of each company. We assumed
that this simplification does not have a drastic impact on the results if the analysis is extended to
all the ASes of each organization. The decision of the attackers is also influenced by the limitation
of our planning algorithm; the Five Eyes countries or powerful states like US and China, represent
interesting scenarios but, the corresponding planning problems are too big even with a reduced set of
domains, as shown in Section 2.2.2. Table 2.1 shows the complexity for different types of attackers on
a DB reduced to the top 100 Alexa domains; the number of attacker and defender actions represent
the upper bound for the DB used. The complexity is, in the worst case, exponential in the number
of executable defender actions, and this number grows linearly with the attacker asset. An attacker
with a huge number of Internet infrastructures or more critical asset7 will execute most of the available
attacker’s actions, increasing the number of executable mitigation actions.
We underline that the criteria used to identify the attackers depends on information security consid-
erations and are not influenced by political orientations.

In appendix E, we will analyze the impact of errors in the data collected during the crawling phase
and in the threat model. We will compare the results of the mitigation analysis in a certain scenario
with tainted versions of the problem.

2.2.2 Case study: Malicious Countries
We evaluate the impact of malicious countries that want to spread malware on the Internet. The goal
can vary depending on the country; from national security reasons to sabotage and espionage purposes.
Many countries present cybersecurity task forces for national security and exist many state-sponsored
APT groups that can have access to nations’ Internet infrastructure [11].

Netherlands

The Netherlands has an important role in the Internet infrastructure as showed in [48]; in the top 100k
Alexa domains, more than four thousand domains are hosted in the Netherlands and the number of
name server located in this country is higher than the number of NS in Canada, Russia, and China.
Fig. 2.1 shows the Pareto frontier assuming as attacker the Netherlands with a restricted database on
the top 100 Alexa domains. The Netherlands has a limited impact on the users of these target domains
because the number of web pages that can be compromised by the attacker is negligible. The number
of malicious web pages visited by any user in a month is one out of one million; the attacker’s reward
can be reduced to zero with the implementation of secure CSP on a small subset of domains.

Great Britain

Great Britain is a more powerful attacker than the Netherlands as shown in Fig. 2.1; even if, in the
top 100k Alexa domains, the number of domains located in this country and the number of domains
that host JS libraries is smaller than the Netherlands. The results show that Great Britain holds more
critical Internet infrastructures, vital for the Internet ecosystem. Indeed, 97 out of 100 web pages
visited by a user could contain malicious code generated by the attacker; the reward of the attacker
can be set to 0 with a higher number of mitigation actions with respect to the Netherlands scenario
but the overall cost is about half. The set of defender actions that can be implemented regard secure
protocol mitigations. In particular, an adoption of HSTS policies for a set of domains, among which

6The attacker is a country or an organization.
7With the term critical asset we refer to an asset that contains fundamental Internet infrastructure; a resource is

classified as fundamental due to the dependencies that other Internet elements in the dataset have with this resource.
For example, ns*.google.com are a more critical asset than the name servers of a University organization in the top 5k
list.

19

0 100 101 102 103 104
Cost of defending against the attacker ($)

0

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

m
al

ici
ou

s w
eb

 p
ag

es
 v

isi
ts

 /
to

ta
l #

 w
eb

 p
ag

es
 v

isi
ts

CN, scenario 40 domains
GB, scenario 30 domains
NL, scenario 100 domains

Figure 2.1: Results for malicious countries in log scale linear around zero. Note that the scenarios are
w.r.t. a different number of domains. A Pareto frontier for a higher number of domains gives an upper
bound for the Pareto frontier of a lower number of domains

reddit.com and tmall.com, and the implementation of HTTPS in parallel with redirection and SRI
could reduce the impact of Drive-by download attacks to zero.

China

We evaluate the impact, in the Internet infrastructure, of one of the world’s largest economies: China.
Marczak et al. [27] claimed that the massive DoS attack against GitHub and GreatFire.org was pro-
duced by the Chinese government. The mechanism used, called Great Cannon, allows to implement
a MITM attack on the unencrypted connections that transit China’s network border. While the goal
of the Great Cannon was to create a massive DDoS attack, this tool can be easily modified to deploy
any kind of malware to the users.
Fig. 2.1 shows the result for a small scenario with the top 40 Alexa domains, the planning algorithm
went out of memory, exceeding the limit of 704Gbit. The mitigations require a higher economical ef-
fort than other scenarios like Great Britain and the Netherlands; roughly 3000 dollars allow to reduce
significantly the web pages with malicious code but they are still not enough to reduce to zero the
reward of the attacker8. Most of the defender actions are secure protocol mitigations on Chinese web-
sites. Mitigations like HTTPS, redirection, HSTS, and upgrade-insecure-requests in the Content
Security Policy are enough to make useless the Great Cannon tool.

2.2.3 Case study: Malicious Companies
Most of the Internet resources are controlled by a small set of companies [48]. If a company is com-
promised or it becomes malicious, the security of the entire Internet could be affected. We assess this
impact with case studies about two American companies.

Amazon

According to [48], the colossus of the e-commerce owns more than two thousand domains in the top
100k Alexa and it is the company with the highest number of domains that host JS libraries9.
Most of the feasible actions are routing attacks against name servers and web servers connections;

8The final reward could be reduced to zero with the implementation of additional mitigations, but due to memory
limit we have not information regarding the right part of the Pareto.

9Roughly double the number of Cloudflare’s domains and more than 10 times the number of Google’s domains.

20

0 100 101 102 103 104
Cost of defending against the attacker ($)

0

10 4

10 3

10 2

10 1

100

m
al

ici
ou

s w
eb

 p
ag

es
 v

isi
ts

 /
to

ta
l #

 w
eb

 p
ag

es
 v

isi
ts

Cloudflare, scenario 70 domains
Amazon, scenario 40 domains

Figure 2.2: Results for malicious companies in log scale linear around zero. Note that the scenarios
are w.r.t. a different number of domains

these attacks can be contained with the implementation of server-side mitigations like HSTS, HTTPS,
SRI, and upgrade-insecure-requests in the Content Security Policy. With an overall cost of roughly
four thousand dollars, the number of malicious web pages retrieved by the users can be reduced by
approximately a factor 10; the total number of malicious web pages can be reduce to zero with an
estimated cost of no more than 7000 dollars.
Some of the compromised entities are shared among different type of attackers; for example Amazon
and Great Britain can both affect insecure connections to baidu.com; therefore, some of the mitigations
are shared among different scenarios.

Cloudflare

Cloudflare provides many utilities among which DDoS mitigations, CDN and DNS services. According
to [48], the American company owns more than 7000 domains and host JS libraries in more than 10 000
of the top 100k Alexa domains. Due to the DNS services offered, it also controls a large group of name
servers. The results presented in Fig. 2.2 are a partial solution to the planning problem; due to the
complexity of the scenario and the asset of the attacker, the planning algorithm exceed the memory
limit considering the top 70 Alexa domains. The number of malicious web pages loaded by the users
is high, 15 web pages out of 100 could contain malicious code injected by Cloudflare and does not
decrease rapidly even with more than 2000 dollars of mitigations. Some of the mitigations proposed in
the fragment of the Pareto frontiers regards some big American companies like Apple and Microsoft,
that have a large number of visitors.

21

Chapter 3

Related work

In this chapter, we will discuss related work on Drive-by downloads, on the effects of malicious infras-
tructure, and on automated mitigation analysis.

Drive-by download

A number of papers have analyzed Drive-by downloads, studying their infrastructures and proposing
new techniques to prevent this kind of attacks.
Grier et al. [12] described the evolution of the Drive-by download ecosystem and analyzed the families
of Exploit Kits and malware present in the wild; additionally, they studied the lifetime of these infras-
tructures. Provos et al. [36] analyzed URLs to detect malicious URLs that initiate drive-by download;
they constructed the related malware distribution network and identified the geographic locality of
web-based malware. Furthermore they extensively studied the exploitation of advertisements to im-
plement drive-by attacks; by contrast, we investigated potential future exploitations. A description
of the prevalent mechanisms used to inject malicious content on websites is presented by Provos in
[37]. Polychronakis et al. [35] described the life cycle of web-based malware and analyzed the network
interaction generated by the infected machines. Cova et al. [9] proposed a modified browser to auto-
matically detect and analyze malicious web pages. Narvaez et al. [31] collected malware samples via
honeyclients and analyzed the performance of different AV vendors. Our work tries to prevent the
infection in the first stage of the attack, protecting Internet connections; the AVs must be the last
line of defense for the final user. Rajab et al. [38] described the most prevalent web-malware detection
systems and showed methods that malicious websites employ to evade detection.

Distribution of malicious infrastructures

Shue et al. [47] analyzed the Internet at the AS level and showed that malicious activities are localized
in specific ASes and are not uniformly distributed on the Internet. Simeonovski et al. [48] presented
a model of the Internet infrastructure to assess attackers impact, without an analysis of the possible
mitigations.

Automated mitigation analysis

Our work is closely related to the work of Speicher et al. [50, 49] and shares the base structure of
the planning framework. While their work regards email sniffing, our model investigates a completely
different scenario, with a formal description of the model at different levels of the Internet infrastructure.
Simulated pentesting is based on the concept of attack graphs [52, 44, 45, 43], where are described
the combination of actions used to compromise a certain target. In our model, we implemented a
monotonic formulation of the boolean statements.

22

Chapter 4

Conclusion

In this thesis, we have presented an automated mitigation analysis of deployment benefits of secure
protocols and configurations to mitigate Drive-by download attacks. Further, we estimated costs for
implementing countermeasures at different levels of the Internet infrastructure, trying to assess the
global effort to protect against the distribution of malicious code.
We demonstrated the effectiveness of this approach through the implementation of different case stud-
ies, based on data collected from the Internet through a crawling activity. We assessed the impact of
threats posed by malicious countries analyzing the influence of China, The Netherlands, and Great
Britain. We examined Amazon and Cloudflare, to access the damage produced by malicious code
spread by companies. Additionally, we showed that the mitigations currently implemented on the
Internet are not adequate to protect users against Drive-by download attacks and the economic effort
required to secure the Internet infrastructure is reasonable for any kind of company.
An interesting future research direction could be to extend the formal threat model developed, with
possible attacks through software vulnerabilities. For example, web servers and name servers with
outdated and insecure software can be compromised by an attacker and used for a Drive-by download
attack. Provos et al. [36] showed that 38% of the Apache servers run an unpatched version.
The algorithm can be extended to implement additional optimizations to reduce the computational
complexity of the planning problem. Finally, the costs associated to each mitigation can be improved
through information and statistics provided by companies that already implemented such countermea-
sures; an exchange of information would produce more realistic scenarios and more reliable results.

23

Appendix A

Drive-by Download and Exploit Kits

The distribution of malware through the Internet is changed from a push-based to a pull-based ap-
proach [36]. A Drive-by download attack is a technique that allows to deploy malware, exploiting
vulnerabilities in the client machine. The procedure is composed by different steps:

• Website compromise: the attacker compromises a popular website exploiting vulnerabilities
in the web server, in the Web application or using Malvertising1;

• Client redirection: the client visits the compromised website and executes the malicious code
present in the server response. This code, typically, forces the client to follow a sequence of
redirects that leads to a malware distribution site2;

• Vulnerability exploitation: the malware distribution site sends a malicious payload that
compromises the victim;

The first phase of the attack can be implemented through different techniques:

• Web server compromise: the attacker exploits vulnerabilities in the server machine; Provos et
al. [36] showed that 38.1% of the Apache servers and 39.9% of the server with PHP scripting, for
which it was able to extract information, presented vulnerable software.

• Content compromise: the attacker compromises the content of the website either exploiting XSS
and SQL vulnerabilities3 or using third-party widgets.4 [37]

• Malvertising: the attacker acquires advertisements in the target website and inserts malicious
code. This mechanism allows to implement Drive-by download attacks without the need to
compromise a server. Furthermore, another advantage is that ads are distributed to specific users
that match certain criteria.5 The use of Ad syndication, which allows selling advertising space
to other advertising companies, generates a chain of trust that is typically abused by malicious
users. The malicious content inserted into the ads, forces the client to follow a sequence of
redirections that lead to the malware distribution site.6 [36]

A.1 Drive-by Download distribution

Sue et al. [46] analyzed the distribution of malicious activities at the AS level; the results showed that
malicious activities are not distributed uniformly over the Internet. Indeed exit ASes with a higher
percentage of malicious IPs with respect to other ASes of the same size.

1In some cases it is possible that the primary goal of a web server is to deploy malicious software, but this approach
is less frequent and presents obvious drawbacks.

2The number of redirections depends on the specific case [36].
3Common targets are blogs, profiles, and website that allow comments
4Embedded links to external JavaScript that provides additional functionalities to the web page.
5This information could regard browser type, version and installed plugins. [4]
6In some cases, the malvertising campaign directly inserts malware within the ads.

24

In the case of Drive-by download attacks, Provos et al. [36] showed that the 95% of the malware
distribution sites map to only 210 ASes; furthermore 67% of the malware distribution sites and 64.6%
of the compromised websites are located in China.
This nonuniform distribution of malicious activities allows to identify specific entities and Internet
interactions that have a higher probability to be exploited by Drive-by download attacks; in other
words, exist some scenarios where it is more likely that this type of attacks can have origin.

A.2 Exploit Kits

The implementation of these attacks requires different steps that involve the generation of traffic to
malicious servers, the implementation of exploits for browsers and plugins and the creation of malware
for the specific target. This complex mechanism is now simplified due to the presence of Exploit Kits
and Traffic-PPI services [12], that moved the Drive-by download to an exploit-as-a-service model.
An Exploit Kit is an HTTP server-side application that delivers malware to the victim: it scans the
client, identifies vulnerable components, and deploys an executable malware on the victim machine.
Grier et al. [12] showed that 47% of the Drive-by attacks lead to an EK.
This malicious artifact presents many functionalities that allow to compromise clients and to hide its
presence from malware scanners [25]:

• Exploit code obfuscation: the exploits7 are obfuscated to avoid signature-based detection
mechanisms;

• User agent identification: the software identifies the browser version, the O.S. and the list of
plugins used by the victim;

• Exploit selection: the software selects the specific exploit depending on the client configuration;

• IP cloaking: the EK changes its behavior depending on the client that interacts with the server.
In case a honeyclient is detected, the software behaves as a normal website and does not send
any exploit.

• Mimic genuine website: the EK can redirect the victim to an innocent website or can provide
some web content in case the client is not vulnerable8;

• AV detection: the EK scans IP Blacklists and AV signature repositories to check for its presence.

• Exploit statistics: the EK provides to the end-user statistics about the configuration of the
victims, the number of clients compromised and the exploits used to infect;

These software artifacts are purchased in the cybercrime underground markets, where it is also possible
to access Traffic-PPI services. In this case, the malicious user has only to provide the executable
malware, the remaining steps of the drive-by attacks are automatically managed by the service.

7Typically JS exploits.
8This behavior can also be implemented after a successful exploitation.

25

Appendix B

Formal model of the Attacker

This appendix contains the complete threat model used to describe Drive-by Download mechanisms.
Each predicate in the precondition of an action is in conjunction with the other predicates; the presence
of disjunctions in a rule is used as shorthand to represent different rules for the same action with a
shared part in the precondition.
Table B.1 is an extension of Table 1.1 and contains the entire list of predicates used in the model. The
predicates in Table 1.1 are repeated here to provide a self-contained appendix.

Table B.1: Threat Model Predicates1

Predicate Description
x

loc−−→ cn The element x ∈ AS ∪ IP ∪D ∪NS is located in cn ∈ Country

d
A−→ i The element d ∈ D has address i ∈ IP

i
orig−−→ a The element i ∈ IP belongs to a ∈ AS

c
JS−→ d The element d ∈ D contains a JS script hosted in the element c ∈ D

e
DNS−−−→ d The element e ∈ NS can be queried to resolve the DNS translation of d ∈ D. In

other words e is one of the authoritative name servers of d

a
RTE(b)−−−−−→ c Given a, b, c ∈ AS, the route from a to c passes through b

C(x) The element x ∈ AS∪IP ∪D∪Country∪NS is compromised. In case x ∈ D∪NS,
the predicate means that x can be used in a Drive-By Download mechanism.
This predicate will be called Globally compromised

C(c, d) The element d ∈ D is considered compromised for all the clients that belong to
c ∈ Country. This predicate will be called Country compromised

XSS(d) The element d ∈ D is vulnerable to XSS
CSP (d) The element d ∈ D implements a secure Content Security Policy
UpgradeRequests(d) The element d ∈ D forces to use the HTTPS protocol for all the resource requests.

This predicate describes the field upgrade-insecure-requests in the CSP
SRI(d, c) The element d ∈ D implements the Sub-Resource Integrity mitigation for all the

resources, used by d, stored in c ∈ D. It is assumed d ̸= c
IPsec(a, b) The packets routed between a ∈ AS and b ∈ AS are protected via IPsec
DNSsec(f) The element f ∈ NS implements DNSsec
HTTPS(d) The element d ∈ D implements HTTPS
l_HTTPS(d, e) All the JS resources, used by d ∈ D and hosted in e ∈ D, are retrieved over HTTPS
HSTS(d) The element d ∈ D implements the header Strict-Transport-Security
Redirect(d) The element d ∈ D redirects HTTP connections to HTTPS. The redirection is either

Temporary (Status code 302) or Permanent (Status code 301)
CT (d) The digital certificates, for the element d ∈ D, are signed by CAs that are compliant

with the Certificate Transparency
DANE(d) The element d ∈ NS implements DANE protocol
IDNS(d) The DNS resolution of the element d ∈ D is compromised. This predicate will be

called Globally compromised DNS
IDNS(d, e) The DNS resolution of the element d ∈ D is compromised for the clients in c ∈

Country. This predicate will be called Country compromised DNS

1Some predicates are represented with an arrow notation. The set of predicates vary over the set of
AS, IP,D,Country,NS,CA.

26

IR(a, c) The route between a, c ∈ AS is compromised
I_CA(d) The element d ∈ D is vulnerable to certificate authority attacks
TLSA_0(a) The element a ∈ CA is present in the Certificate chain of the TLSA record with

certificate usage field 0
TLSA_2(a) The element a ∈ CA is present in the Certificate chain of the TLSA record with

certificate usage field 2

Using the notation of the Boolean Logic, the symbol ¬ in front of a predicate negates the predicate
itself.

B.1 Propagation rules

This section describes the propagation rules used in the threat model. Table B.2 connects the rules
presented in Section 1.2 of Chapter 1 to the one presented in this appendix. We provide each rule,
followed by the intuition of what kind of attack it represents.

Table B.2: Propagation Rules

Rule Chapter 1 Appendix B
Initially Compromised Nodes Rules B.1, B.2, B.3
Content Compromise Rule 1.3 Rule B.4
Third-party JS Injection Rule 1.4 Rule B.5
DNS Compromise Rule 1.5 Rule B.6
Route Compromise Rule 1.6 Rules B.7, B.8
Route to Web Server Compromise Rule 1.7 Rule B.9
Route to Name Server Compromise Rule 1.8 Rule B.10
From DNS to Domain Compromise Rules 1.9, 1.10 Rules B.11, B.12, B.13, B.14
Inline JS Injection Rule 1.11 Rule B.15
Certificate Compromise Rules 1.12, 1.13 Rules B.16, B.17, B.18

B.1.1 Initially Compromised Nodes

x ∈ AS ∪ IP ∪NS ∪ CA cn ∈ Country x
loc−−→ cn C(cn)

C(x) (B.1)

Intuition: All the autonomous systems, IPs, name servers and certificate authorities associated to a
malicious country are under the control of the attacker.

i ∈ IP a ∈ AS i
orig−−→ a C(a)

C(i) (B.2)

Intuition: All the IPs, that belong to an sutonomous system compromised by the attacker, are
considered under the control of the attacker.

i ∈ IP d ∈ D ∪NS d
A−→ i C(i)

C(d) (B.3)

Intuition: If a domain (name server) resolves to an IP address under the control of the attacker,
then also the domain (name server) is considered compromised.

27

B.1.2 Content Compromise

d ∈ D XSS (d) ¬CSP(d)

C(d) (B.4)

Intuition: If a web server is vulnerable to XSS attacks and it does not implement a secure Content
Security Policy, then the attacker can gain control of the content of the domain.

B.1.3 Third-party JS Injection

d, c ∈ D c
JS−→ d ¬SRI (d , c) C(c)

C(d) (B.5)

Intuition: If a web server contains a JS resource that is not protected via Subresource Integrity and
it is hosted in a domain under the control of the attacker, then the attacker can modify the content of
the JS script with malicious code.

B.1.4 DNS Compromise

d ∈ D e ∈ NS e
DNS−−−→ d C(e)

IDNS(d) (B.6)

Intuition: If one of the authoritative name servers of a domain is under the control of the attacker,
then the DNS resolution for this domain is considered compromised2. An attacker can modify the DNS
resolution and map the domain name to a different IP.

B.1.5 Route Compromise

a, b, c ∈ AS a ̸= b ̸= c a
RTE(b)−−−−−→ c ¬IPsec(a, c) C(b)

IR(a, c) (B.7)

Intuition: If a route from an autonomous system to another AS is not protected via IPsec and it
passes through an autonomous system under the control of the attacker, then the route is insecure and
the two end-point of the communication could be target of an attack. This rule does not consider the
case in which the sender or the destination are compromised, this because the IPsec mitigation cannot
protect against this scenario.

a ∈ AS C(a)

∀c ∈ AS : IR(a, c) (B.8)

Intuition: If the sender AS is under the control of the attacker, then all the routes that have origin in
this autonomous system are considered insecure. This scenario describes the situation where a country
or a provider implements surveillance over its population.

2Due to the fact that there are no information about which authoritative NS is queried by a client, this is a simplifi-
cation implemented in the model. Furthermore, if the attacker is able to compromise one of the authoritative NS for a
domain, it is possible that it is also able to compromise the other NSs.

28

B.1.6 Route to Web Server Compromise

e∈Country d∈D a,c∈AS d
orig−−→c a

loc−→e

(¬HTTPS(d) ∨ (HTTPS(d)∧I_CA(d)) ∨ (HTTPS(d)∧(¬Redirect(d)∨(Redirect(d)∧¬HSTS(d))))) IR(a,c)

C(e, d) (B.9)

Intuition: If a route between a client and a web server is insecure, then the attacker can implement
a MITM attack in the following cases:
This threat model assumes the worst scenario in which a non-tech-savvy user accesses the web server
via HTTP. It is important to underline that HTTP is the default protocol used by browsers if a protocol
is not explicitly defined;

• Case 1: If the web server does not implement HTTPS, then the attacker can eavesdrop and
replace the content retrieved from the web server;

• Case 2: If the web server implements HTTPS but it does not redirect to HTTPS, then, for the
hypothesis previously presented, the attacker can eavesdrop and replace the content retrieved
from the web server. The HSTS header does not provide any protection if the redirection is not
implemented; indeed the header is ignored in an HTTP connection[16];

• Case 3: If the web server implements HTTPS and redirects HTTP traffic to HTTPS but it does
not implement HSTS, then the attacker can compromise the connection before the redirection
phase;

• Case 4: If the web server implements HTTPS but it is vulnerable to certificate authority attacks3,
then a malicious CA can forge digital certificates for the domain and use them to authenticate
connections to malicious web servers.

The Case 3 does not take into account the fact that, using a Permanent redirection, the new URI
is cached; therefore all the new requests for the resource will be automatically mapped to the new
URI [10]. This model requires, in addition, the presence of the Strict-Transport-Security header.
This choice is due to the fact that the redirection is not a secure mitigation and the HSTS provides a
better security with respect to the Permanent redirection:

• HSTS covers the entire domain;

• HSTS implements a preloaded list4;

For those domains that are not in the preloaded HSTS list, the first access to a web server is still
insecure even if all the previous requirements are met.5 In this model the attacker is not allowed
to exploit this vulnerable window to implement a MITM attack; the attacker can compromise the
subsequent connections.
The post condition of this rule declares that all the connections, that have origin in the country where
the sender AS is located, are compromised. This is an upper bound assumption because it is possible
that exist ASs, located in the country, that do not present an insecure route. This simplification is
due to the fact that there are no information about the location, within the country, of the client that
contacts the web server.

B.1.7 Route to Name Server Compromise

f
DNS−−−→ d a, c ∈ AS a

loc−→ e e ∈ Country f
orig−−→ c IR(a, c) ¬DNSsec(f)

IDNS(d, e) (B.10)

3See Section B.1.10
4It is a list of domains that are automatically configured with HSTS. This list is integrated in the browser.
5A possible mitigation for this scenario is to increase the number of domains contained in the preloaded HSTS list.

29

Intuition: If a route between a client and a name server is insecure and the NS does not implement
the DNSsec protocol, then the attacker can redirect the client to a malicious NS or can implement a
DNS cache poisoning attack. As a result the DNS resolution of the queried domain is compromised
for all the connections that have origin in the country where the sender AS is located6.

B.1.8 From DNS to Domain Compromise

IDNS(d) (¬HTTPS(d)∨(HTTPS(d)∧I_CA(d))∨
(HTTPS(d)∧(¬Redirect(d)∨(Redirect(d)∧¬HSTS(d)))))

C(d) (B.11)

Intuition: If a web server has a Globally compromised DNS 7 and it does not fulfill all the conditions
to establish a secure connection8, then the attacker can redirect all the clients to a malicious web
server that can claim to be the legitimate one.

IDNS(d,e) e∈Country (¬HTTPS(d)∨(HTTPS(d)∧I_CA(d))∨
(HTTPS(d)∧(¬Redirect(d)∨(Redirect(d)∧¬HSTS(d)))))

C(e, d) (B.12)

Intuition: The same situation applies in case the web server has a Country compromised DNS ; the
only difference lies in the post condition, where the attacker can redirect the client of the country to a
malicious web server.

IDNS(c) c
JS−−→ d ¬SRI (d , c) ¬l_HTTPS (d , c) ¬UpgradeRequests(d)

C(d) (B.13)

Intuition: If a CDN, that provides JS resources for a certain web server, has a Globally compromised
DNS, then the attacker can redirect the client to a CDN that provides malicious JS resources. This
scenario is possible if all these conditions are met:

• The web server does not implement the Subresource integrity mitigation: in this case the JS
resource can be modified with a malicious one.

• The protocol used to retrieve the resources of the CDN is not HTTPS: in this case the endpoint
CDN is not authenticated.

• The web server does not implement the upgrade-insecure-requests field in the CSP: in this
case all the site’s insecure URLs are not replaced with secure one.

IDNS(c, e) e ∈ Country c
JS−−→ d ¬SRI (d , c) (¬l_HTTPS (d , c) ∧ ¬UpgradeRequests(d))

C(e, d)
(B.14)

Intuition: The same situation applies in case the CDN has a Country compromised DNS ; the post
condition presents the same structure of rule B.12.
In rules B.13 and B.14 the post condition considers the web server and not the CDN as compromised.
This choice is due to the fact that the initial connection, that allows the attacker to exploit the
vulnerability, starts from the interaction with the web server.

6This is the same simplification presented in rule B.1.6.
7This means that the attacker has control over the content provided by one of the authoritative NSs for this domain.
8A secure connection via HTTPS allows to authenticate the endpoints.

30

B.1.9 Inline JS Injection

c∈Country d2
JS−−→d1 a,b∈AS d1,d2∈D d2

orig−−→b IR(a,b) a
loc−→c

(¬HTTPS(d1)∨(HTTPS(d1)∧(¬Redirect(d1)∨(Redirect(d1)∧¬HSTS(d1)))))
¬l_HTTPS(d1 ,d2) ¬UpgradeRequests(d1) ¬SRI (d1 ,d2)

C(c, d1) (B.15)

Intuition: If the route from a client to a CDN, that provides JS resources to a web server, is insecure9

and all these conditions are met:

• The web server does not implement the Subresource integrity mitigation: in this case a MITM
attacker can drop the legitimate JS resource and can replace the content with malicious code.

• The protocol used to retrieve the resources of the CDN is not HTTPS

• The web server does not implement the upgrade-insecure-requests field in the CSP

• The web server is not accessible via HTTPS or does not redirect automatically to the secure
protocol: in this case all the requests are not mixed content and therefore are not blocked by the
browser.

Then, the attacker can intercept the JS requests and inject malicious JS code.

B.1.10 Certificate Compromise

a ∈ CA d ∈ D C(a) e
DNS−−−→ d ¬CT (d) ¬DANE (e)

I_CA(d) (B.16)

Intuition: If a certificate authority is under the control of the attacker and these conditions are met:

• the web server’s digital certificate are signed by CAs that are not compliant with the Certificate
Transparency project.

• the authoritative NSs of the domain do not implement the DANE protocol.

Then, the attacker can forge malicious digital certificates for the domain and use them to generate
authenticated connections to malicious web servers.

a ∈ CA d ∈ D C(a) e
DNS−−−→ d ¬CT (d) DANE (e) C(e)

I_CA(d) (B.17)

Intuition: If, in the same scenario of rule B.16, one of the NS is under the control of the attacker, the
DANE protocol cannot be trust. For example the attacker can modify the TLSA records and insert a
new hash of a digital certificate signed by the compromised CA.

a∈CA d∈D C(a) e
DNS−−−→d

¬CT (d) DANE(e) ¬C(e) (TLSA_0 (a)∨TLSA_2 (a))

I_CA(d) (B.18)

Intuition: If, in the same scenario of rule B.16, the authoritative NS are not compromised and
implement the DANE protocol, the attacker can forge new digital certificates if one of these two
conditions is met:

• the TLSA certificate usage field is 0 and the compromised CA is in the Certificate Chain10

9This model assumes that the web server does not implement a Proxy to retrieve the resources from the CDN on
behalf of clients.

10The model assumes that the TLSA record defines the entire chain; this is the most secure approach.

31

• the TLSA certificate usage field is 2 and the compromised CA is in the Certificate Chain from
the Server certificate to the Trust anchor

Rule B.18 is not implemented in the planner problem because no NS, of the considered domains,
implements TLSA record with these specific usage fields.
Even if CT and DANE are considered different technologies [22], in this scenario they can be considered
alternative solutions.

32

Appendix C

Crawlers and Data acquisition

The threat model developed to describe Drive-by download attacks, requires a set of heterogeneous
data that range from networking mechanisms to web security and cryptographic solutions. To retrieve
all this information it is necessary to implement different crawlers that are able to interact with diverse
elements on the Internet.

Some of the information contained in the final dataset is the result of external and related projects.
We had access to a list of websites with reflected cross-site scripting vulnerabilities; this information
is used to identify, in the dataset, the websites vulnerable to XSS attacks.1

A web crawler, developed in previous CISPA projects, is used to obtain all the JS resources dynami-
cally loaded in a web page; the routes among ASes are collected thanks to an existing Python script.

It is now presented a detailed explanation of the crawlers developed to obtain the dataset. All the
scripts are written in Python and the extrapolated data are stored in a PostgreSQL database.

C.0.1 Header Crawler

The main goal of the crawler is to collect the security headers send by a web server; an additional
functionality allows to detect, in a website, the presence of SRI in static JS resources. To achieve these
objects the script makes extensive use of two libraries: Requests and Beautiful Soup.
The crawler presents two different modes:

• Single mode: allows to crawl a specific target;

• Multiple mode: allows to crawl a set of websites from a file;

The mode is selected via a command line argument.
The script is composed by a set of functions, each of which analyzes a specific header. The secu-
rity headers collected are X-XSS-Protection, X-Content-Type-Options, X-Frame-Options, Strict-
Transport-Security and Content-Security-Policy.

In Listing C.1 is presented the procedure used to collect the Content security policy header. The
mechanism works as follow: the response header is examined to detect if the CSP header, or a dep-
recated version2, is implemented; if the header is found, the value of the CSP fields are collected and
the policy is evaluated to discover if inline scripts and eval functions are allowed.

1 #th i s func t i on ana lyze s the re sponse header to de t e c t CSP f i e l d s
2 #the arguments o f the func t i on are : the re sponse headers and a d i c t i ona ry that w i l l

conta in s the CSP f i e l d s and t h e i r va lue s
3 de f check_CSP(headers , d i c t i ona ry) :
4 #f l a g to determine i f i n l i n e s c r i p t s are a l lowed

1This value represents a lower bound; it is possible that other domains in the list are vulnerable to a different type of
XSS attack.

2X-Content-Security-Policy and X-WebKit-CSP.

33

5 a l l owed_in l ine = True
6 #f l a g to determine i f eva l f un c t i on s are a l lowed
7 al lowed_eval = True
8 #th i s f l a g i s used to determine i f the f i e l d ’ s c r i p t−s r c ’ i s p re sent or not
9 found_scr ipt_src = False

10

11 f o r csp in label_CSP :
12 i f csp in headers :
13 pr in t (’FOUND CSP ’)
14 #save the header in a va r i ab l e and ex t r a c t the in fo rmat ion about the

d i f f e r e n t f i e l d s
15 header_CSP = headers [csp]
16 #the f i e l d s ex t rac t ed are : de fau l t−src , s c r i p t−src , s t y l e−src , connect−src ,

ob ject−src , upgrade−i n s ecure−r eques t s , r equ i r e−s r i −f o r
17 f o r f i e l d in CSP_fields :
18 #fo r each f i e l d c r e a t e an entry in the d i c t i ona ry
19 d i c t i ona ry [f i e l d]={}
20 r e s u l t = re . s p l i t (f i e l d , header_CSP)
21 #i f the r e s u l t o f the s p l i t has l ength > 1 means i t matched something
22 i f l en (r e s u l t) > 1 :
23 d i c t i ona ry [f i e l d] [’ Present ’]=True
24 #acce s s the second element and e l im ina t e the i n i t i a l space
25 content = re . s p l i t (’ ; ’ , r e s u l t [1] . s t r i p ())
26 #the value o f the f i e l d i s in the f i r s t element
27 content = content [0]
28 #some value in the f i e l d can be surronded by ’ ’ (e . g . ’ s e l f ’)
29 content = content . r ep l a c e (" ’ " , "")
30 #add the content to the Value Key
31 i f f i e l d == ’ requ i r e−s r i −f o r ’ or f i e l d == ’ upgrade−i n s ecure−

r eque s t s ’ :
32 #these two f i e l d s do not pre sent any content , t h e r e f o r e t h e i r

va lue w i l l be s e t to True
33 d i c t i ona ry [f i e l d] [’ Value ’]= s t r (True)
34 e l s e :
35 d i c t i ona ry [f i e l d] [’ Value ’]= content
36 #analyze i f i n l i n e −s c r i p t and eva l are a l lowed
37 #Logic f o r i n l i n e s c r i p t : (NOT(de fau l t−s r c) AND NOT(s c r i p t−s r c)) OR

(de fau l t−s r c==’unsafe− i n l i n e ’ AND NOT(s c r i p t−s r c)) OR (s c r i p t−s r c==’unsafe− i n l i n e
’) −> i n l i n e s c r i p t a l lowed

38 i f f i e l d == ’ s c r i p t−s r c ’ :
39 found_scr ipt_src = True
40 #th i s func t i on checks i f (s c r i p t−s r c==’unsafe− i n l i n e ’)
41 a l l owed_in l ine = check_in l ine_scr ip t (content)
42 #th i s func t i on checks i f (s c r i p t−s r c==’unsafe−eva l ’)
43 al lowed_eval = check_eval (content)
44 #th i s statement corresponds to (de fau l t−s r c==’unsafe− i n l i n e ’ AND

NOT(s c r i p t−s r c))
45 i f f i e l d == ’ de fau l t−s r c ’ and not (found_scr ipt_src) :
46 a l l owed_in l ine = check_in l ine_scr ip t (content)
47 al lowed_eval = check_eval (content)
48 e l s e :
49 #the f i e l d i s not pre sent in the CSP
50 d i c t i ona ry [f i e l d] [’ Present ’]= Fal se
51 d i c t i ona ry [f i e l d] [’ Value ’]= ’NULL ’
52

53 #i f a f i e l d i s not s p e c i f i e d in the CSP, i t i s va lue i s i n h e r i t from the
de fau l t−s r c content

54 #check that the de fau l t−s r c i s p re sent
55 i f d i c t i ona ry [’ de fau l t−s r c ’] [’ Present ’]==True :
56 f o r f i e l d in CSP_fields :
57 #ignore the f i e l d that does not i n h e r i t from de fau l t−s r c
58 i f f i e l d != ’ r equ i r e−s r i −f o r ’ and f i e l d != ’ upgrade−i n s ecure−

r eque s t s ’ :
59 #check i f the f i e l d i s not pre sent
60 i f d i c t i ona ry [f i e l d] [’ Present ’]==False :
61 #inh e r i t from de fau l t−s r c

34

62 d i c t i ona ry [f i e l d] [’ Value ’]= d i c t i ona ry [’ de fau l t−s r c ’] [’ Value
’]

63 #add entry f o r i n l i n e s c r i p t
64 d i c t i ona ry [’ i n l i n e −s c r i p t ’]={}
65 d i c t i ona ry [’ i n l i n e −s c r i p t ’] [’ Present ’]=True
66 d i c t i ona ry [’ i n l i n e −s c r i p t ’] [’ Value ’]= s t r (a l l owed_in l ine)
67 #add entry f o r eva l
68 d i c t i ona ry [’ eva l ’]={}
69 d i c t i ona ry [’ eva l ’] [’ Present ’]=True
70 d i c t i ona ry [’ eva l ’] [’ Value ’]= s t r (al lowed_eval)

Listing C.1: CSP function

The header crawling phase presented some difficulties during the entire process. Network problems,
temporary unavailability and other kinds of errors required to store in log files failed connections, and
re-run the process after a certain amount of time. Many domains do not properly redirect connections
to their website; in some cases, it was necessary to change the protocol and the URL to access specific
resources.

C.0.2 CT Crawler

The list of digital certificates of a domain, stored in the active Certificate Transparency logs, is acces-
sible through a website managed by Google.3

CT crawler receives as input a list of domains and contacts the website to retrieve the CAs that
signed a digital certificate; due to the fact that the content is dynamically generated, the script uses
Selenium Web driver, an object-oriented API for web-app testing. The script generates a headless
Firefox browser4, and interacts with the website as a normal client. The entire content of the page
is loaded and the HTML code is analyzed to extract the relevant information. Due to the fact that
this technique requires to run a browser, the performances are worst with respect to traditional web
crawlers; to improve the efficiency, the python script utilizes threats to generate many instances of the
headless browser.

C.0.3 Alexa Crawler

Alexa5 services allow to access website statistics regarding popularity, engagement, audience geography,
and visitors. Alexa crawler generates a headless browser to collect the percentage and the value of
unique visitors from all the domains in the dataset. This information is a premium feature accessible
through a login in the Alexa website; the script simulates a user, inserting the credentials and verifying
that the login occurs. Listing C.2 describes the creation of the headless browser and the authentication
procedure.

1 opt ions = Options ()
2 opt ions . s e t_head le s s (head l e s s=True)
3 d r i v e r = webdriver . F i r e f ox (executable_path=path_f i re fox , f i r e f o x_op t i on s=opt ions)
4 #load the page
5 d r i v e r . get (ur l_ log in)
6

7 #id e n t i f y the l o g i n input
8 emai l = d r i v e r . find_element_by_name (’ emai l ’)
9 emai l . send_keys (my_email)

10

11 password = dr i v e r . find_element_by_name (’ password ’)
12 password . send_keys (my_pw)
13

14 login_attempt = dr i v e r . find_element_by_xpath (" //∗ [@type=’submit ’] ")
15 login_attempt . submit ()

Listing C.2: Alexa authentication phase

3https://transparencyreport.google.com/https/certificates
4A web browser without GUI.
5https://www.alexa.com/

35

The extraction of the number of unique visitors is done through a specific function presented in List-
ing C.3. The HTML source code is passed to the function and all the span tags are selected. At this
point the country is identified through an acronym in the ID of the tag; while the number of visitors
is collected from the text part of the span tag.
In some cases the number of visitors from a certain country is not available, therefore the script es-
timates this value from the percentage of visitors assigned to the country and the number of visitors
and percentages available from other countries.

1 de f ge tUn iqueVi s i t o r s (html_code) :
2 d i c t i ona ry={}
3 html_source = Beaut i fu lSoup (html_code , ’ html . pa r s e r ’)
4

5 #the unique v i s i t o r in fo rmat ion i s s to r ed in a tag with id=muvnum−∗ where ∗
i s the i n i t i a l o f the country

6 #e . g . f o r the USA: ’muvnum−US ’
7 r e s u l t_ s c r i p t = html_source . f i nd_a l l (’ span ’ , id=re . compi le (’muvnum−∗ ’))
8 f o r element in r e s u l t_ s c r i p t :
9 #ext ra c t the value o f the id a t t r i b u t e

10 id_value=element . get (’ id ’)
11 #ext ra c t only the dynamic part
12 country=re . s p l i t (’muvnum− ’ , id_value)
13 country = country [1]
14 #ext ra c t the content o f the tag span , t h i s w i l l be the unique v i s i t o r va lue
15 un ique_v i s i t o r s = element . getText ()
16 #convert to i n t e g e r
17 un ique_v i s i t o r s = l o c a l e . a t o i (un ique_v i s i t o r s)
18 d i c t i ona ry [country]= un ique_v i s i t o r s
19

20 re turn d i c t i ona ry

Listing C.3: Extraction number of visitors

C.0.4 HTTPS Crawler

HTTPS is a protocol used to establish a secure connection on the Internet; over the years an increasing
number of domains supported this protocol6 but, many websites7 still serve content over unencrypted
connections. [20]
The implementation of HTTPS is not enough to prevent attacks from malicious users. It is necessary
to redirect all the HTTP traffic to a secure connection and force the user to access the resource over
HTTPS in all the subsequent accesses.
The crawler contacts a list of websites to detect if HTTPS is implemented; it also collects the sequence
and type of redirections needed to reach the web server. The procedure works as follow:

• First phase: the crawler connects to the website through HTTP; it collects the sequence of
redirections and analyzes if the web server switches to a secure connection. If this occurs, the
redirection code is analyzed to fetch its type. The script inspects the landing URL to detect if
the final domain is over HTTPS. Listing C.4 presents a snippet of the code used in this phase.

• Second phase: the crawler directly connects to the website through HTTPS. The script ex-
amines the response status code to detect if the content is available through the encrypted
connection.

1 de f ge t_red i r e c t (u r l) :
2 . . .
3 t ry :
4 r e s ou r c e = ’ http :// ’ + u r l
5 re sponse = reque s t s . get (re source , t imeout=timeout , headers=headers)
6 i f r e sponse . h i s t o r y :

6https://letsencrypt.org/stats/
7Among which some of the top-ranked Alexa domains.

36

7 #append the l a s t re sponse to the response h i s t o r y
8 re sponse . h i s t o r y . append (response)
9 #f l a g s used to de t e c t HTTPS r e d i r e c t i o n

10 f l a g = False
11 t r i g g e r e d = False
12 #analyze each r e d i r e c t i o n (i f any)
13 f o r re sp in response . h i s t o r y :
14 i f f l a g :
15 #check i f i t r e d i r e c t s to HTTPS
16 i f ’ https : // ’ in resp . u r l :
17 i f code==301:
18 pr in t (’ Permanent Red i r e c t i on to HTTPS ’)
19 r e d i r e c t i o n = 301
20 e l s e :
21 pr in t (’ Temporary Red i r e c t i on to HTTPS ’)
22 r e d i r e c t i o n = 302
23 f l a g=False
24 t r i g g e r e d=True
25 e l s e :
26 f l a g=False
27 i f not t r i g g e r e d :
28 #th i s i s executed only i f a HTTPS r e d i r e c t i o n i s not found yet
29 i f r e sp . status_code == 301 or resp . status_code == 302 :
30 f l a g = True
31 code = resp . status_code
32 pr in t (" {} :{} " . format (resp . status_code , re sp . u r l))
33 #add to the db
34 db . add_record_redirect (tab l e_red i r e c t , id_domain , re sp . status_code , re sp .

u r l)
35 e l s e :
36 pr in t ("Request was not r e d i r e c t e d ")
37 #check i f the f i n a l u r l i s over HTTPS
38 i f ’ https : // ’ in response . u r l :
39 pr in t (’HTTPS ’)
40 db . add_record_HTTPS(table_HTTPS , id_domain , ’ yes ’ , r e d i r e c t i o n)
41 re turn
42 except (r eque s t s . except i on s . ConnectionError , r eque s t s . except i on s . Timeout , r eque s t s .

TooManyRedirects) :
43 . . .

Listing C.4: HTTPS detection

Detecting if a website is loaded over an insecure connection can be a hard task [19]. For example,
amazonaws.com correctly redirects insecure connections to HTTPS and changes the final landing do-
main name; however, if the domain is accessed directly over HTTPS, an error is triggered. Some
websites, for example momoshop.com.tw, support HTTPS connections but they downgrade to HTTP.
Many websites presented a server error status code in a landing URL with the HTTPS protocol; in
some cases, this is due to the fact that Web hosting providers support HTTPS connections but the
owner of the website does not provide any content on this port.

C.0.5 DNSSec and DANE scripts

DNSsec provides data origin authentication and data integrity to protect the DNS infrastructure against
spoofing and MITM attacks.
DNS-based Authentication of Named Entities (DANE) is an alternative to the Certification Authorities
mechanism and allows domains to announce, in DNS response secured via DNSsec, information about
the PKIX certificates.
To detect if an authoritative NS implements DNSsec and DANE, the script generates DNS queries to
evaluate the presence of protocol-specific records. The dnspython library is used to create a resolver
and craft queries for the target domains.
DANE information is announced through TLSA records; a TLSA record associates a TLS certificate
to a specific domain. The record is composed by:

37

• Certificate Usage Field: specifies how to consider the certificate provided in the data field;

• Selector Field: specifies which part of the server certificate must match the data field;

• Matching Type Field: specifies how the certificate is presented;

• Certificate Association Data Field: contains the full certificate or a hash;

1 r e s o l v e r = dns . r e s o l v e r . Reso lver ()
2 r e s o l v e r . t imeout = 1
3 r e s o l v e r . l i f e t i m e = 1
4

5 t ry :
6 . . .
7 f o r domain in domains :
8 . . .
9 t ry :

10 #get id o f the domain from the DB
11 db . get_ID_Domain(domain)
12 id = db . ge t_re su l t ()
13 #check i f DANE TLSA record i s implemented
14 t ry :
15 answers = r e s o l v e r . query (’_443 . _tcp . ’+domain , ’TLSA ’)
16 f o r rdata in answers :
17 db . add_record_DANE(table_DANE , id , s t r (rdata))
18 enable_dane = ’True ’
19 except Exception as e :
20 . . .

Listing C.5: Query TLSA record

In Listing C.5 is presented a snippet of the script for the analysis of DANE. A resolver is created using
the dnspython library and a timeout of 1 s is set for the response. The script generates a DNS query
to access the TLSA record; due to the fact that a NS can manage a list of TLSA records, the entry is
uniquely identified by port, protocol, and domain.
The second part of the script is dedicated to the analysis of DNSsec. The list of authoritative name
servers for the domain is collected and each NS is queried by the script. As shown in Listing C.6, the
script generates a DNS query for the authoritative NS asking for the DNSKEY records; the status
of the response is checked and the answers are examined. DNSsec is considered enable only if both
DNSKEY and RRSIG records are present in the answer.

1 l i s t_ns = query_author itat ive_ns (domain , ’NS ’)
2 f o r nsname in l i s t_ns :
3 #by de f au l t con s id e r DNSsec enabled=False
4 enable_dnssec=’ Fa l se ’
5 t ry :
6 #get the IP address o f the NS
7 re sponse = r e s o l v e r . query (s t r (nsname) , dns . rdatatype .A)
8 nsaddr = response . r r s e t [0] . to_text ()
9 # get DNSKEY

10 r eque s t = dns . message . make_query (domain+’ . ’ , dns . rdatatype .DNSKEY,
want_dnssec=True)

11 # send the query
12 re sponse = dns . query . udp(request , nsaddr , t imeout=timeout)
13 i f r e sponse . rcode () != 0 :
14 pr in t (’No DNSkey ’)
15 # answer should conta in DNSKEY and RRSIG(DNSKEY)
16 answer = response . answer
17 #i f the answer does not conta in two element then the NS does not

implement DNSsec
18 i f l en (answer) != 2 :
19 pr in t (domain+" : NO DNSsec")
20 e l s e :
21 enable_dnssec = ’True ’

38

22 pr in t (domain+" : DNSsec")
23 . . .

Listing C.6: Query DNSKEY record

39

Appendix D

Planner Problem Generator

A planning problem is composed by an initial state, a goal condition and a set of possible actions; the
planning aims to provide a sequence of actions that, from the initial state, bring to a state where the
goal condition holds. The planning algorithm used in this project is based on the classical planning,
where it is assumed that:

1. The initial state is unique and completely known

2. The environment is deterministic, discrete and with a single agent

3. Actions are executed sequentially

D.0.1 The PDDL language

The Planning Domain Definition Language is the standard input language in the planning area. PDDL
allows to represent complex problems in a compact way using an object-style representation.
The planner input is separated into two files: a domain file that contains the predicates, types and
action schema, and a problem file that contains objects, initial state and goal definition.
Most of the planners translate the input files in a preprocessed intermediate file, where the variables
are instantiated with all their possible values; this procedure is called grounding. The cost of this
precomputation is exponential in operator and predicate arity but leads to more efficient planning.

D.0.2 Fast Downward and Translator file

The planner used in this project is called Fast Downward; a classical planning system based on heuris-
tic search [15]. The translator component of the planner traduces the PDDL file in an alternative
representation, generating a file called Translator. Due to the fact that this procedure is expensive in
terms of memory and time, the planning problem is directly represented in the Translator file. Starting
from the dataset, the process allows to generate only the actions for which it is possible to fulfill all
the requirements, reducing the number of combinations for the planner.

The structure of the Translator file1 is composed by 8 sections, among which the variable, the initial
state, the goal and the operator section.

Variable section

This section contains the instantiation of the objects described in the threat model, as variables that
can assume value True (Atom) or False (NegatedAtom). The section is optimized to include only the
variables for which it is possible to change the value through the planner’s actions. For example, the
predicate DNSsec(n) with n ∈ NS is instantiated with all the authoritative NS for which it is possible
to set the value from False to True through a sequence of actions.2 The predicate XSS (d) with d ∈ D

1http://www.fast-downward.org/TranslatorOutputFormat.
2For the NSs with DNSsec already enabled, the variable is not created because in the model developed, planner’s

actions cannot disable DNSsec mitigation.

40

it is not instantiated due to the fact that the value is fixed for each domain;3 this information is directly
encoded in the actions definition.4

The following example describes the instantiation of the predicate DANE(c) for c ∈ NS for an
authoritative NS of Google.
EXAMPLE:
begin_variable
var58
-1
2
NegatedAtom DANE(ns1.google.com)
Atom DANE(ns1.google.com)
end_variable

Initial state section

This section contains the definition of the initial value for all the variables defined in the previous
section. It is composed by a list of 0 and 1, where the index identifies the variable; 0 corresponds to
the value False (NegatedAtom) and 1 corresponds to the value True (Atom). The following example
describes the initial state for the first 4 variables; var0,var1 and var2 have initial value set to False,
var3 has value True.
EXAMPLE:
begin_state
0
0
0
1
...
end_state

Goal section

This section contains a list of pairs (variable,value) for a subset of the declared variables; the planner
reaches the goal state when all the variables present the specified value.
The following example describes a possible goal section; suppose that var632 corresponds to the in-
stantiation of C (d) for d ∈ D with the domain github.com, then the final goal of the planner is to
compromise the Github domain.
EXAMPLE:
begin_goal
1
632 1
end_goal

Operator section

This section contains the instantiation of the attacker and defender actions for those elements for which
it is possible to fulfill all the preconditions.
For example consider the rule B.4, that describes a content compromise attack in the Threat model.
It presents two preconditions:

• XSS (d): the domain must be vulnerable to XSS attacks;
3A domain is either vulnerable or not depending on the information presents in the dataset. The planner’s actions

cannot sanitize or insert XSS vulnerabilities in the website.
4This is the core of the optimization.

41

• ¬CSP(d): the domain must not implement a secure Content security policy;

This action is generated only for those domains that present XSS vulnerabilities and do not implement
a CSP; this is achieved through an analysis of the collected data. For example, in the dataset, the
github.com domain presents a secure CSP; the B.4 rule will never be executed by the planner and as a
result, it is not included in the set of possible actions. Instead, the website of a well-known computer
vendor5 is vulnerable to reflected XSS attacks and does not implement a secure Content security pol-
icy; in this case, the action is instantiated. The following example describes how it is represented the
instantiated action: suppose var6 and var8 are respectively the instantiation of CSP(d) and C (d) for
the vulnerable domain, the following code describes the content compromise action for the well-known
computer vendor.6

EXAMPLE:
begin_operator
attack_Content_Compromised_1/1 well-known-computer-vendor
1 #number of preconditions
6 0 #precond: var6 must be set to 0, i.e., must be False
1 #number of postcond
0 8 0 1 #var8 changes value from 0 to 1, i.e., from False to True
0 #cost of the action
end_operator

D.0.3 PDDL generator script

The procedure to generate the Translator file from the PostgreSQL database, is implemented through
two major files: the utility and PDDLGenerator scripts. The first script contains a set of functions to
access and process data from the database; the second script utilizes these functions to generate the
final input for the planner.

Some functions, defined in the utility script, present a complex logic that allows to process and extract
data from the dataset. Listing D.1 shows the function used to extract valid Strict-Transport-Security
headers from the collected data.

1 de f getValidHSTSDomain () :
2 t ry :
3 g l oba l db
4 db . get_HSTSDomain ()
5

6 #An STS header i s c o r r e c t l y formed i f :
7 #1) d i r e c t i v e s (max−age , includeSubDomains) MUST NOT BE repeated
8 #2) d i r e c t i v e s are separated by a ;
9

10 #HSTS in format ion are s to r ed i f max−age parameter != 0
11 #l i s t o f tup l e o f (domain , h s t s header) that have an hs t s header
12 domains_hsts = db . get_results_columns ()
13

14 #ext ra c t the l i s t o f domain over HTTPS
15 l ist_domain_https = get_domain_HTTPS()
16 domains = []
17 f o r domain_hsts in domains_hsts :
18 #i f the domain does not implement HTTPS th i s header i s ignored
19 #s p l i t the tup l e between domain and HSTS header
20 domain = domain_hsts [0]
21 hs t s = domain_hsts [1]
22 i f not domain in l ist_domain_https :
23 cont inue
24 #RFC 6797 : only the f i r s t HSTS header MUST be cons ide r ed

5We do not reveal the identity for security reasons.
6The precondition XSS(d) is embedded in the action definition.

42

25 f i r s t_h s t s = re . s p l i t (’ , ’ , h s t s)
26 f i r s t_h s t s = f i r s t_h s t s [0]
27

28 #con t r o l that the d i r e c t i v e s are not repeted in a s i n g l e HSTS HEADER
29 repeated_max_age = re . s p l i t (’max−age=’ , f i r s t_h s t s)
30 repeated_subDomains = re . s p l i t (’ includeSubDomains ’ , f i r s t_h s t s)
31 #i f the l en i s g r e a t e r than 2 the HSTS header i s i l l e g a l l y formatted
32 i f l en (repeated_max_age) > 2 or l en (repeated_subDomains) > 2 :
33 #ignore t h i s domain
34 pr in t (’ Repeated d i r e c t i v e s in : ’ + domain)
35 cont inue
36

37 #the HSTS header i s l e g a l
38 #ext ra c t the d i r e c t i v e s
39 d i r e c t i v e s = re . s p l i t (’ ; ’ , f i r s t_h s t s)
40

41 #ext ra c t max age value i f p re sent
42 f o r d i r e c t i v e in d i r e c t i v e s :
43 i f ’max−age=’ in d i r e c t i v e :
44 max_age = re . s p l i t (’max−age=’ , d i r e c t i v e)
45

46 i f l en (max_age) > 1 :
47 value = in t (max_age [1])
48 i f va lue == 0 :
49 # ignore the HSTS header
50 pr in t (’Max−age value = 0 in : ’ + domain + ’ −> HSTS i s

ignored ’)
51 cont inue
52 e l s e :
53 # th i s i s a va l i d HSTS header with a max−age g r e a t e r than 0
54 domains . append (domain)
55

56 re turn domains
57 except Exception as e :
58 pr in t (s t r (e))

Listing D.1: HSTS extraction and analysis

The planning problem is specified through a configuration file that defines the initial asset of the
attacker and the number of domains to consider. The latter setting influences the complexity of the
planning problem and the required amount of time needed to find a solution.
The PDDLGenerator script is composed by different parts, one for each section of the Translator file.
Initially, the reward of the attacker, in terms of number of visitors, is computed for each domain;
after that, the script is dedicated to the creation of the Variable section. Listing D.2 presents a
snippet of the code; the functions get_variable_Compromised(), get_variable_UpdateRequest() and
get_variable_HSTS() instantiate a variable with the specific element, following the structure described
in Section D.0.2.

1 #C(x) f o r x in CDN
2 list_CDN = []
3 f o r domain in l i s t_domains :
4 #get l i s t o f a l l j s r e t r i e v e d by the domain
5 js_domain = u t i l i t y . get_js_domain (domain)
6 #fo r each o f them ex t r a c t the cdn
7 f o r j s in js_domain :
8 i n fo rmat ion = u t i l i t y . extract_information__js (j s)
9 #get the CDN

10 cdn = in format ion [’ cdn ’]
11 i f cdn != None :
12 #crea t e a Compromised va r i ab l e f o r the domain
13 s e l f . get_variable_Compromised (cdn , ’ domain ’)
14 list_CDN . append (cdn)
15

16

17 #C(c) f o r c in Country

43

18 f o r country in c oun t r i e s :
19 s e l f . get_variable_Compromised (country , ’ country ’)
20

21 #C(x) f o r x in NS
22 l ist_NS = []
23 #add the NS o f the domain
24 f o r domain in l i s t_domains :
25 ns_domain = u t i l i t y . get_NS_domain (domain)
26 l ist_NS+=ns_domain
27

28 #add the NS o f the CDN
29 f o r cdn in list_CDN :
30 ns_cdn = u t i l i t y .get_NS_CDN(cdn)
31 l ist_NS+=ns_cdn
32

33 #e l im ina t e dup l i c a t e s
34 l ist_NS = l i s t (s e t (l ist_NS))
35

36 f o r ns in l ist_NS :
37 s e l f . get_variable_Compromised (ns , ’ ns ’)
38

39 #UpdateRequests (d) f o r d in Domain
40 #ext ra c t the l i s t o f domains that have , in the CSP, the Update Request f i e l d
41 domain_with_UpdateRequest = u t i l i t y . getUpdateRequestsDomain ()
42 f o r domain in l i s t_domains :
43 i f not domain in domain_with_UpdateRequest :
44 #crea t e the va r i ab l e
45 s e l f . get_variable_UpdateRequest (domain)
46

47 #HSTS(d) f o r d in Domain
48 #ext ra c t the l i s t o f domains with a c o r r e c t HSTS header
49 domain_with_HSTS = u t i l i t y . getValidHSTSDomain ()
50 f o r domain in l i s t_domains :
51 i f not domain in domain_with_HSTS :
52 #crea t e the va r i ab l e
53 s e l f . get_variable_HSTS (domain)

Listing D.2: Variable section generation

The Operator section is implemented using a create_operator() function, following the Translator
specification. Listing D.3 shows the implementation of the rule B.1.7, that describes the route to NS
compromise in the Threat model. This rule requires as preconditions:

• ¬DNSsec(f) with f ∈ NS: the NS must not implement DNSsec; this is checked at line 12
and added in the precondition list at line 32. The optimization presented in Section D.0.2 is
implemented in this code at line 12: for all the NSs that already implement DNSsec, the rule is
not created because it will never be executed.

• IR(a, c) with a, c ∈ AS: the route from the AS of the client to the AS of the NS is compromised;
this is added in the precondition list at line 34.

The postcondition is define at line 39, where the variable IDNS(d, e) with d ∈ D, e ∈ Country , that
describes DNS resolution compromise of the domain d for the Country e, is set from value False to
value True.

1 #ROUTE TO NS COMPROMISED RULE
2 pr in t (’ROUTE TO NS COMPROMISE’)
3 #eva luate NS o f Website and CDN
4 f i n a l _ l i s t = l i s t (s e t (l i s t_domains+list_CDN))
5 f o r domain in f i n a l _ l i s t :
6 i f domain in l i s t_domains :
7 NSs = u t i l i t y . get_NS_domain (domain)
8 e l s e :
9 NSs = u t i l i t y .get_NS_CDN(domain)

10 f o r ns in NSs :

44

11 #crea t e the ru l e only i f the NS does not implement DNSsec
12 i f not ns in list_DNSsec :
13 #get the DNSsec va r i ab l e
14 id_variable_DNSsec = s e l f . get_variable_DNSsec (ns)
15 #search in which AS they belong to
16 ASs = u t i l i t y . get_AS_element (ns)
17 f o r AS in ASs :
18 #get va r i ab l e I_r (as1 ,AS) : as1 in l ist_AS AND as1 !=AS
19 f o r AS1 in list_AS :
20 i f AS1!=AS:
21 #get the va r i ab l e
22 id_variable_route_compromised = s e l f .

get_variable_Compromised_Route (AS1 ,AS)
23 #get the country a s s o c i a t ed with AS1
24 countries_AS = u t i l i t y . get_country_element (AS1)
25 #check i f one o f the se c oun t r i e s i s in the cons ide r ed

s e t
26 f o r country in countries_AS :
27 i f country in c oun t r i e s :
28 #crea t e the ru l e
29 #precond
30 precond = []
31 #no DNSEsec
32 precond . append ((id_variable_DNSsec , 0))
33 #route must be compromise
34 precond . append ((id_variable_route_compromised ,

1))
35

36 #postcond
37 #the va r i ab l e w i l l change s t a t e from 0 to 1
38 id_variable_dns = s e l f .

get_variable_Compromised_DNS_Country (domain , country)
39 postcond = [(id_variable_dns , 0 , 1)]
40 #crea t e the operator
41 s e l f . c reate_operator (’

attack_Route_to_NS_Compromise_1/1 {0} {1} (v ia NS {2}) \n ’ . format (domain , country , ns)
, precond , postcond)

Listing D.3: Attacker rule generation

Along with the attacker rules, the Operator section contains the defender mitigations. The structure
is similar to the one presented in Listing D.3; for example, Listing D.4 contains the code used to create
the DANE mitigation for the planning problem.

1 #Implement DANE
2 pr in t (’IMPLEMENT DANE’)
3 considered_NSs = []
4 f i n a l _ l i s t = l i s t (s e t (l i s t_domains+list_CDN))
5 f o r domain in f i n a l _ l i s t :
6 postcond = []
7 precond = []
8 name_NS = ""
9 i f domain in l i s t_domains :

10 NSs = u t i l i t y . get_NS_domain (domain)
11 e l s e :
12 NSs = u t i l i t y .get_NS_CDN(domain)
13 f o r ns in NSs :
14 i f not ns in considered_NSs :
15 considered_NSs . append (ns)
16 i f not ns in list_DANE :
17 id_variable_DANE = s e l f . get_variable_DANE(ns)
18 postcond . append ((id_variable_DANE , 0 , 1))
19 name_NS=name_NS+" "+ns
20 i f not ns in list_DNSsec :
21 id_variable_DNSsec = s e l f . get_variable_DNSsec (ns)
22 precond . append ((id_variable_DNSsec , 1))

45

23

24 i f l en (postcond) !=0:
25 s e l f . c reate_operator (’ fix_Implement_DANE {0}\n ’ . format (name_NS) , precond

, postcond , cost_DANE)

Listing D.4: Defender mitigation generation

46

Appendix E

Additional Evaluations

To analyze the results of the planner algorithm and to evaluate the correctness of the Pareto frontiers,
we compared the results of the mitigation analysis in a certain scenario with tainted versions of the
problem.
We proceeded in two main directions:

• DB taint: in this scenario, we assume that the DB used for the implementation of the plan-
ning problems is tainted. We evaluated two different cases: in the first case, some information
regarding the Internet infrastructure is ignored, for example, the information regarding which
name servers implement DNSsec; in the second case, some information regarding the Internet
infrastructure is overestimated, for example, we assumed that all the name servers implement
DNSsec.

• Action taint: in this scenario, we assume that the formal threat model is tainted. We evaluated
two different cases: in the first case we ignored some mitigations but we allowed the implemen-
tation of the attacker’s actions that are related to these defender actions; in the second case we
also ignored the attacker actions.

E.1 DB Taint

The data collected during the crawling phase provides a representation of the Internet infrastructure
that allows to evaluate our threat model in a concrete scenario. We assess the impact of errors in
the crawling phase and the influence in the final result of the planner. We focused on the mitigation
currently implemented in the Internet1 and we tainted using two different approaches:

• Missing information: we assume that the crawling phase fails to detect right implementations
of certain mitigations. For example, the information regarding the implementation of HTTPS in
web servers. In this case, we generate a planning problem assuming that all web servers do not
implement HTTPS.

• Overestimated information: we assume that the crawling phase fails to detect wrong implemen-
tations of certain mitigations. For example, the evaluation of a secure CSP can be implemented
with some errors that bring the crawler to judge as secure bypassable CSP. In this case, we
generate a planning problem assuming that all domains implement a secure CSP.

Fig. E.1 shows the results of the planning algorithm in 3 different cases: the first case represents the
Missing information taint, where it is assumed that DNSsec and HTTPS are not implemented by any
name server and domain; the second case represents the Overestimated information taint, where it is
assumed that all the domains implement HTTPS and all the related name servers enforce DNSsec.
These two scenarios are compared with the result of the planner without any taint in the DB.
The comparison of the Pareto frontiers shows that the inadequacy of the crawling information generates

1We did not taint the networking structure of the Internet; for example, we did not modify the information regarding
the name servers for a certain domain.

47

0 100 101 102 103 104
Cost of defending against FR ($)

0

10 3

10 2

10 1

100

m
al

ici
ou

s w
eb

 p
ag

es
 v

isi
ts

 /
to

ta
l #

 w
eb

 p
ag

es
 v

isi
ts

FR, scenario Missing information domains
FR, scenario no taint domains
FR, scenario Overestimated information domains

Figure E.1: Pareto frontiers for France with HTTPS and DNSsec DB taint over the top 20 Alexa
domains

different defender’s strategies. In the Missing information case, the result of the planner shows a
pessimistic scenario with a higher number of malicious pages accessed and a more expensive cost to
mitigate the attacker actions. The Overestimated information case presents a result similar to the not
tainted scenario, except for the final part of the Pareto, where the number of malicious web pages
retrieved by the users decreases faster than the other problem. This situation can be explained due to
the fact that the problem ran over the top 20 Alexa domains, where almost all the domains and name
servers already implement these mitigations.

E.2 Actions Taint

The results provided by the planning algorithm strictly depend on the formal threat model developed.
The description of the Drive-by download mechanisms with this formal representation makes some
assumptions regarding the feasible attacks and the possible mitigations. To evaluate the impact of
these choices we taint the threat model in two different ways:

• Mitigation taint: we assume that some of the mitigations are not effective against certain types
of attacks, consequently, they are not implemented in the threat model. For example, we force
the planner to not execute HTTPS and SRI mitigations.

• Mitigation+Action taint: we assume that some of the rules we developed for our model are
worthless; we compute the Pareto frontiers for smaller versions of the threat model without
specific attacker and mitigation actions. For example, we do not consider Inline JS injection and
Route compromise attacks.

Fig. E.2 shows the results for the different cases for the top 40 Alexa domains. The Pareto frontier of the
formal threat model is compared with two tainted version. In the Mitigation taint scenario, the planner
algorithm is forced to not execute SRI and HTTPS mitigation actions; the Pareto frontier generated
indicates that the attacker reward cannot be reduced to zero without implementing these mitigations.
Moreover, the comparison with the normal result of the Pareto frontier shows that the HTTPS and
SRI mitigations provide a better defense, given a similar cost, with respect to other countermeasures.
The Mitigation+Action taint scenario describes a threat model without certain types of attacks; in
the specific case the model does not consider Third-party JS injection through malicious CDN, Route
to Web Server compromise through MITM attacks and From DNS to Domain compromise through
malicious DNS responses for the target domain. The resulting Pareto frontier describes an optimistic

48

0 100 101 102 103 104
Cost of defending against FR ($)

0

10 3

10 2

10 1

100

m
al

ici
ou

s w
eb

 p
ag

es
 v

isi
ts

 /
to

ta
l #

 w
eb

 p
ag

es
 v

isi
ts

FR, scenario Mitigation taint domains
FR, scenario no taint domains
FR, scenario Mitigation+action taint domains

Figure E.2: Pareto frontiers for France with HTTPS and SRI actions taint over the top 40 Alexa
domains

scenario where it is assumed that only Inline JS injection and From DNS to Domain compromise
through malicious DNS responses for the domain’s CDNs are possible. The number of malicious web
pages loaded by the users is smaller with respect to the normal problem, with an underestimation of the
attacker’s power. The real impact of the attacker is roughly ten times bigger. In this specific scenario,
the attacker is only able to implement a DNS poisoning attack to the resolution of a CDN for the domain
jd.com. The reward can be set to zero through the enforcement of the upgrade-insecure-requests
field in the CSP.

49

Bibliography

[1] Towards a comprehensive picture of the great firewall’s DNS censorship. In 4th USENIX Workshop
on Free and Open Communications on the Internet (FOCI 14), San Diego, CA, 2014. USENIX
Association.

[2] APNIC. Dnssec validation rate by country, 2018.

[3] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Introduction and
Requirements. RFC 4033, 2005.

[4] Nick Biasini, Tom Schoellhammer, and Emmanuel Tacheau. Threat spotlight: Spin to
win...malware, 2016.

[5] Mike Chapple. How expensive are ipsec vpn setup costs?, 2017.

[6] World Wide Web Consortium. Content security policy level 3, 2016.

[7] World Wide Web Consortium. Mixed content, 2016.

[8] World Wide Web Consortium. Subresource integrity, 2016.

[9] Marco Cova, Christopher Krügel, and Giovanni Vigna. Detection and analysis of drive-by-
download attacks and malicious javascript code. In Proceedings of the 19th International Confer-
ence on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pages
281–290, 2010.

[10] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content.
RFC 7231 (Proposed Standard), June 2014.

[11] FireEye. Advanced persistent threat groups, 2018.

[12] Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J. Dietrich, Kirill Levchenko,
Panayiotis Mavrommatis, Damon McCoy, Antonio Nappa, Andreas Pitsillidis, Niels Provos,
M. Zubair Rafique, Moheeb Abu Rajab, Christian Rossow, Kurt Thomas, Vern Paxson, Stefan
Savage, and Geoffrey M. Voelker. Manufacturing compromise: the emergence of exploit-as-a-
service. In the ACM Conference on Computer and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012, pages 821–832, 2012.

[13] Scott Helme. How widely used are security based http response headers?, 2015.

[14] Scott Helme. Protect your site from cryptojacking with csp + sri, 2018.

[15] Malte Helmert. The fast downward planning system. J. Artif. Intell. Res., 26:191–246, 2006.

[16] J. Hodges, C. Jackson, and A. Barth. HTTP Strict Transport Security (HSTS). RFC 6797
(Proposed Standard), November 2012.

[17] P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named Entities (DANE) Transport
Layer Security (TLS) Protocol: TLSA. RFC 6698 (Proposed Standard), August 2012. Updated
by RFCs 7218, 7671.

50

[18] R. Housley. Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsulating
Security Payload (ESP). RFC 4309 (Proposed Standard), December 2005.

[19] Troy Hunt. Why no https? here’s the world’s largest websites not redirecting insecure requests to
https, 2018.

[20] Troy Hunt and Scott Helme. Why no https?, 2018.

[21] ICANN. Tld dnssec report, 2018.

[22] Google Inc. Comparison with other technologies, 2018. Accessed: 12 Jul 2018 14:33:34 CET.

[23] Joshua Mervine Justin Dorfman. How to implement sri in your build process, 2016.

[24] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301 (Proposed
Standard), December 2005. Updated by RFCs 6040, 7619.

[25] Vadim Kotov and Fabio Massacci. Anatomy of exploit kits - preliminary analysis of exploit kits as
software artefacts. In Engineering Secure Software and Systems - 5th International Symposium,
ESSoS 2013, Paris, France, February 27 - March 1, 2013. Proceedings, pages 181–196, 2013.

[26] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC 6962 (Experimental), June
2013.

[27] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah McKune, Arn Rey,
John Scott-Railton, Ron Deibert, and Vern Paxson. An analysis of china’s “great cannon”. In 5th
USENIX Workshop on Free and Open Communications on the Internet (FOCI 15), Washington,
D.C., 2015. USENIX Association.

[28] MaxMind. Ip geolocation and online fraud prevention.

[29] Mozilla. Pki:ct, 2014.

[30] Paul Mutton. 95% of https servers vulnerable to trivial mitm attacks, 2016.

[31] Julia Narvaez, Barbara Endicott-Popovsky, Christian Seifert, Chiraag Uday Aval, and Deborah A.
Frincke. Drive-by-downloads. In 43rd Hawaii International International Conference on Systems
Science (HICSS-43 2010), Proceedings, 5-8 January 2010, Koloa, Kauai, HI, USA, pages 1–10,
2010.

[32] European Network and Information Security Agency. The cost of dnssec deployment, 2010.

[33] RIPE NNC. Information about specific ip addresses and prefixes.

[34] Eric Osterweil, Burt Kaliski, Matt Larson, and Danny McPherson. Reducing the x . 509 attack
surface with dnssec ’ s dane. 2012.

[35] Michalis Polychronakis and Niels Provos. Ghost turns zombie: Exploring the life cycle of web-
based malware. In First USENIX Workshop on Large-Scale Exploits and Emergent Threats, LEET
’08, San Francisco, CA, USA, April 15, 2008, Proceedings, 2008.

[36] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and Fabian Monrose. All your iframes
point to us. In Proceedings of the 17th Conference on Security Symposium, SS’08, pages 1–15,
Berkeley, CA, USA, 2008. USENIX Association.

[37] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang, and Nagendra Modadugu.
The ghost in the browser analysis of web-based malware. In Proceedings of the First Conference
on First Workshop on Hot Topics in Understanding Botnets, HotBots’07, pages 4–4, Berkeley,
CA, USA, 2007. USENIX Association.

51

[38] Moheeb Abu Rajab, Lucas Ballard, Nav Jagpal, Panayiotis Mavrommatis, Daisuke Nojiri, Niels
Provos, and Ludwig Schmidt. Trends in circumventing web-malware detection. Technical report,
2011.

[39] D. Raumer, S. Gallenmüller, P. Emmerich, L. Märdian, and G. Carle. Efficient serving of vpn
endpoints on cots server hardware. In Cloud Networking, 2016.

[40] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271 (Draft
Standard), January 2006. Updated by RFCs 6286, 6608, 6793, 7606, 7607, 7705.

[41] E. Rescorla. HTTP Over TLS. RFC 2818 (Informational), 2000.

[42] RIPE Atlas. Internet data collection system. https://atlas.ripe.net/, 2017.

[43] Ronald W. Ritchey and Paul Ammann. Using model checking to analyze network vulnerabilities.
In IEEE Symposium on Security and Privacy, 2000.

[44] B. Schneier. Attack trees. Dr. Dobbs Journal, 1999.

[45] Oleg Sheyner, Joshua W. Haines, Somesh Jha, Richard Lippmann, and Jeannette M. Wing.
Automated generation and analysis of attack graphs. In IEEE Symposium on Security and Privacy,
2002.

[46] C. A. Shue, A. J. Kalafut, and M. Gupta. Abnormally malicious autonomous systems and their
internet connectivity. IEEE/ACM Transactions on Networking, 20(1):220–230, Feb 2012.

[47] Craig A. Shue, Andrew J. Kalafut, and Minaxi Gupta. Abnormally malicious autonomous systems
and their internet connectivity. IEEE/ACM Trans. Netw., 20(1):220–230, 2012.

[48] Milivoj Simeonovski, Giancarlo Pellegrino, Christian Rossow, and Michael Backes. Who con-
trols the internet?: Analyzing global threats using property graph traversals. In International
Conference on World Wide Web, 2017.

[49] Patrick Speicher, Marcel Steinmetz, Michael Backes, Jörg Hoffmann, and Robert Künnemann.
Stackelberg planning: Towards effective leader-follower state space search. In AAAI’18, 2018.
forthcoming.

[50] Patrick Speicher, Marcel Steinmetz, Robert Künnemann, Milivoj Simeonovski, Giancarlo Pelle-
grino, Jörg Hoffmann, and Michael Backes. Formally reasoning about the cost and efficacy of
securing the email infrastructure. In 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018, London, United Kingdom, April 24-26, 2018, pages 77–91, 2018.

[51] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web with content security
policy. In Proceedings of the 19th International Conference on World Wide Web, WWW 2010,
Raleigh, North Carolina, USA, April 26-30, 2010, pages 921–930, 2010.

[52] Steven J. Templeton and Karl E. Levitt. A requires/provides model for computer attacks. In New
Security Paradigms Workshop, 2000.

[53] Ben Toews. Subresource integrity, 2015.

[54] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. CSP is dead, long
live csp! on the insecurity of whitelists and the future of content security policy. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 1376–1387, 2016.

[55] Ali Zand, Giovanni Vigna, Richard A. Kemmerer, and Christopher Kruegel. Rippler: Delay injec-
tion for service dependency detection. In 2014 IEEE Conference on Computer Communications,
INFOCOM 2014, Toronto, Canada, April 27 - May 2, 2014, pages 2157–2165, 2014.

52

https://atlas.ripe.net/

	Executive Summary
	Introduction
	Drive-by Download Attacks as a Stackelberg Planning Problem
	Planning
	Formal Threat Model
	Attacker reward
	Attacker actions

	Formal Defender Model
	Content mitigations
	Secure protocol mitigations
	Routing mitigations
	DNS-level mitigations
	CA mitigations

	Experimental Validation over the Internet
	Data acquisition
	Server
	Routing and Network Information
	Countries

	Result and Evaluation
	Attackers Identification
	Case study: Malicious Countries
	Case study: Malicious Companies

	Related work
	Conclusion
	Drive-by Download and Exploit Kits
	Drive-by Download distribution
	Exploit Kits

	Formal model of the Attacker
	Propagation rules
	Initially Compromised Nodes
	Content Compromise
	Third-party JS Injection
	DNS Compromise
	Route Compromise
	Route to Web Server Compromise
	Route to Name Server Compromise
	From DNS to Domain Compromise
	Inline JS Injection
	Certificate Compromise

	Crawlers and Data acquisition
	Header Crawler
	CT Crawler
	Alexa Crawler
	HTTPS Crawler
	DNSSec and DANE scripts

	Planner Problem Generator
	The PDDL language
	Fast Downward and Translator file
	PDDL generator script

	Additional Evaluations
	DB Taint
	Actions Taint

	Bibliography

